TryOnGAN is a recent virtual try-on approach, which generates highly realistic images and outperforms most previous approaches. In this article, we reproduce the TryOnGAN implementation and probe it along diverse angles: impact of transfer learning, variants of conditioning image generation with poses and properties of latent space interpolation. Some of these facets have never been explored in literature earlier. We find that transfer helps training initially but gains are lost as models train longer and pose conditioning via concatenation performs better. The latent space self-disentangles the pose and the style features and enables style transfer across poses. Our code and models are available in open source.


翻译:TryOnGAN是最近的一种虚拟试演方法,它生成了高度现实的图像,并且优于大多数以往的方法。在本篇文章中,我们复制了 TryOnGAN 执行程序,并用不同角度来研究它:转移学习的影响、用潜在空间内插的外形和特性调节图像生成的变体和潜在空间内插特性。其中一些方面在早期文献中从未探讨过。我们发现,转移最初有助于培训,但随着模型培训时间更长,通过凝聚形成调节效果更好,收益却丢失了。潜伏空间的自我分解作用和风格特征,并使得风格的跨组合转移成为可能。我们的代码和模型可以在开放源代码中找到。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
48+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2020年8月3日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
48+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员