Evaluating the quality of synthetic data remains a persistent challenge in the Android malware domain due to instability and the lack of standardization among existing metrics. This work integrates into MalDataGen a Super-Metric that aggregates eight metrics across four fidelity dimensions, producing a single weighted score. Experiments involving ten generative models and five balanced datasets demonstrate that the Super-Metric is more stable and consistent than traditional metrics, exhibiting stronger correlations with the actual performance of classifiers.


翻译:在Android恶意软件领域,由于现有度量的不稳定性及缺乏标准化,评估合成数据的质量仍是一个持续存在的挑战。本研究在MalDataGen中集成了一种超度量,该超度量聚合了四个保真度维度上的八种度量指标,生成一个加权综合分数。涉及十种生成模型和五个平衡数据集的实验表明,超度量比传统度量更稳定、更一致,并且与分类器的实际性能表现出更强的相关性。

0
下载
关闭预览

相关内容

【NeurIPS 2024 Oral】用于多条件分子生成的图扩散Transformer
专知会员服务
16+阅读 · 2024年10月5日
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员