Shifted partial derivative (SPD) methods are a central algebraic tool for circuit lower bounds, measuring the dimension of spaces of shifted derivatives of a polynomial. We develop the Shifted Partial Derivative Polynomial (SPDP) framework, packaging SPD into an explicit coefficient-matrix formalism. This turns shifted-derivative spans into concrete linear-algebraic objects and yields two dual measures: SPDP rank and SPDP codimension. We define the SPDP generating family, its span, and the SPDP matrix M_{k,l}(p) inside a fixed ambient coefficient space determined by the (k,l) regime, so rank is canonical and codimension is a deficit from ambient fullness. We prove structural properties needed for reuse: monotonicity in the shift/derivative parameters (with careful scoping for |S|=k versus |S|<=k conventions), invariance under admissible variable symmetries and basis changes, and robustness across standard Boolean/multilinear embeddings. We then give generic width-to-rank upper-bound templates for local circuit models via profile counting, separating the model-agnostic SPDP toolkit from additional compiled refinements used elsewhere. We illustrate the codimension viewpoint on representative examples.


翻译:移位偏导数(SPD)方法是电路下界研究的核心代数工具,用于度量多项式移位导数空间的维数。本文发展移位偏导数多项式(SPDP)框架,将SPD方法封装为显式的系数矩阵形式。该框架将移位导数张成空间转化为具体的线性代数对象,并导出两种对偶度量:SPDP秩与SPDP余维数。我们定义SPDP生成族、其张成空间以及位于由(k,l)参数确定的固定环境系数空间内的SPDP矩阵M_{k,l}(p),从而使得秩具有典范性,而余维数表征相对于环境空间满性的缺损。我们证明了该框架可复用所需的结构性质:关于移位/导数参数的单调性(针对|S|=k与|S|≤k两种约定需谨慎界定作用域)、在容许变量对称性与基变换下的不变性,以及跨标准布尔/多重线性嵌入的鲁棒性。继而通过轮廓计数,为局部电路模型给出通用的宽度到秩上界模板,从而将模型无关的SPDP工具集与文献中其他需额外编译的优化方法相分离。最后,我们通过典型算例阐释余维数视角的应用价值。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年6月24日
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年6月24日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员