Let $p$ be a prime and $s,m,n$ be positive integers. This paper studies quasi-recursive MDS matrices over Galois rings $GR(p^{s}, p^{sm})$ and proposes various direct construction methods for such matrices. The construction is based on skew polynomial rings $GR(p^{s}, p^{sm})[X;σ]$, whose rich factorization properties and enlarged class of polynomials are used to define companion matrices generating quasi-recursive MDS matrices. First, two criteria are established for characterizing polynomials that yield recursive MDS matrices, generalizing existing results, and then an additional criterion is derived in terms of the right roots of the associated Wedderburn polynomial. Using these criteria, methods are developed to construct skew polynomials that give rise to quasi-recursive MDS matrices over Galois rings. This framework extends known constructions to the non-commutative setting and significantly enlarges the family of available matrices, with potential applications to efficient diffusion layers in cryptographic primitives. The results are particularly relevant for practical implementations when $s = 1$ and $p = 2$, i.e., over the finite field $\mathbb{F}_{2^m}$, which is of central interest in real-world cryptographic applications.
翻译:设 $p$ 为素数,$s,m,n$ 为正整数。本文研究伽罗瓦环 $GR(p^{s}, p^{sm})$ 上的拟递归MDS矩阵,并提出了此类矩阵的多种直接构造方法。该构造基于斜多项式环 $GR(p^{s}, p^{sm})[X;σ]$,利用其丰富的因式分解性质和扩大的多项式类来定义生成拟递归MDS矩阵的友矩阵。首先,建立了两个用于刻画生成递归MDS矩阵的多项式准则,推广了现有结果;随后,基于相关Wedderburn多项式的右根导出了一个附加准则。利用这些准则,本文发展了构造斜多项式的方法,这些多项式可在伽罗瓦环上导出拟递归MDS矩阵。此框架将已知构造推广至非交换情形,并显著扩展了可用矩阵族,在密码原语的高效扩散层设计中具有潜在应用价值。所得结果对于 $s = 1$ 且 $p = 2$(即有限域 $\mathbb{F}_{2^m}$ 上)的实用实现尤为相关,这在现实密码学应用中具有核心意义。