Current approaches combining multiple static analyses deriving different, independent properties focus either on modularity or performance. Whereas declarative approaches facilitate modularity and automated, analysis-independent optimizations, imperative approaches foster manual, analysis-specific optimizations. In this paper, we present a novel approach to static analyses that leverages the modularity of blackboard systems and combines declarative and imperative techniques. Our approach allows exchangeability, and pluggable extension of analyses in order to improve sound(i)ness, precision, and scalability and explicitly enables the combination of otherwise incompatible analyses. With our approach integrated in the OPAL framework, we were able to implement various dissimilar analyses, including a points-to analysis that outperforms an equivalent analysis from Doop, the state-of-the-art points-to analysis framework.


翻译:目前采用多种静态分析方法,从不同、独立的特性中得出多种静态分析,其重点是模块化和自动化的、独立的分析优化,而强制性方法则促进手册的、针对具体分析的优化。在本文中,我们介绍了一种新颖的静态分析方法,利用黑板系统的模块化,并结合了宣示和迫切技术。我们的方法允许互换,并插插插式扩展分析,以便改进稳健(i)性、精确性和可缩放性,并明确促成不兼容性分析的组合。我们的方法被纳入了OPAL框架,因此我们得以实施各种不同分析,包括一个比Doop(最新点分析框架)的对等分析更优的点分析。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2020年11月26日
Arxiv
6+阅读 · 2017年12月2日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
相关论文
Top
微信扫码咨询专知VIP会员