We consider \emph{random linear programs} (rlps) as a subclass of \emph{random optimization problems} (rops) and study their typical behavior. Our particular focus is on appropriate linear objectives which connect the rlps to the mean widths of random polyhedrons/polytopes. Utilizing the powerful machinery of \emph{random duality theory} (RDT) \cite{StojnicRegRndDlt10}, we obtain, in a large dimensional context, the exact characterizations of the program's objectives. In particular, for any $\alpha=\lim_{n\rightarrow\infty}\frac{m}{n}\in(0,\infty)$, any unit vector $\mathbf{c}\in{\mathbb R}^n$, any fixed $\mathbf{a}\in{\mathbb R}^n$, and $A\in {\mathbb R}^{m\times n}$ with iid standard normal entries, we have \begin{eqnarray*} \lim_{n\rightarrow\infty}{\mathbb P}_{A} \left ( (1-\epsilon) \xi_{opt}(\alpha;\mathbf{a}) \leq \min_{A\mathbf{x}\leq \mathbf{a}}\mathbf{c}^T\mathbf{x} \leq (1+\epsilon) \xi_{opt}(\alpha;\mathbf{a}) \right ) \longrightarrow 1, \end{eqnarray*} where \begin{equation*} \xi_{opt}(\alpha;\mathbf{a}) \triangleq \min_{x>0} \sqrt{x^2- x^2 \lim_{n\rightarrow\infty} \frac{\sum_{i=1}^{m} \left ( \frac{1}{2} \left (\left ( \frac{\mathbf{a}_i}{x}\right )^2 + 1\right ) \mbox{erfc}\left( \frac{\mathbf{a}_i}{x\sqrt{2}}\right ) - \frac{\mathbf{a}_i}{x} \frac{e^{-\frac{\mathbf{a}_i^2}{2x^2}}}{\sqrt{2\pi}} \right ) }{n} }. \end{equation*} For example, for $\mathbf{a}=\mathbf{1}$, one uncovers \begin{equation*} \xi_{opt}(\alpha) = \min_{x>0} \sqrt{x^2- x^2 \alpha \left ( \frac{1}{2} \left ( \frac{1}{x^2} + 1\right ) \mbox{erfc} \left ( \frac{1}{x\sqrt{2}}\right ) - \frac{1}{x} \frac{e^{-\frac{1}{2x^2}}}{\sqrt{2\pi}} \right ) }. \end{equation*} Moreover, $2 \xi_{opt}(\alpha)$ is precisely the concentrating point of the mean width of the polyhedron $\{\mathbf{x}|A\mathbf{x} \leq \mathbf{1}\}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员