Right heart failure (RHF) is a disease characterized by abnormalities in the structure or function of the right ventricle (RV), which is associated with high morbidity and mortality. Lung disease often causes increased right ventricular load, leading to RHF. Therefore, it is very important to screen out patients with cor pulmonale who develop RHF from people with underlying lung diseases. In this work, we propose a self-supervised representation learning method to early detecting RHF from patients with cor pulmonale, which uses spirogram time series to predict patients with RHF at an early stage. The proposed model is divided into two stages. The first stage is the self-supervised representation learning-based spirogram embedding (SLSE) network training process, where the encoder of the Variational autoencoder (VAE-encoder) learns a robust low-dimensional representation of the spirogram time series from the data-augmented unlabeled data. Second, this low-dimensional representation is fused with demographic information and fed into a CatBoost classifier for the downstream RHF prediction task. Trained and tested on a carefully selected subset of 26,617 individuals from the UK Biobank, our model achieved an AUROC of 0.7501 in detecting RHF, demonstrating strong population-level distinction ability. We further evaluated the model on high-risk clinical subgroups, achieving AUROC values of 0.8194 on a test set of 74 patients with chronic kidney disease (CKD) and 0.8413 on a set of 64 patients with valvular heart disease (VHD). These results highlight the model's potential utility in predicting RHF among clinically elevated-risk populations. In conclusion, this study presents a self-supervised representation learning approach combining spirogram time series and demographic data, demonstrating promising potential for early RHF detection in clinical practice.


翻译:右心衰竭(RHF)是一种以右心室(RV)结构或功能异常为特征的疾病,具有高发病率与死亡率。肺部疾病常导致右心室负荷增加,进而引发RHF。因此,从存在潜在肺部疾病的群体中筛查出发展为RHF的肺心病患者至关重要。本研究提出一种自监督表征学习方法,用于从肺心病患者中早期检测RHF,该方法利用肺活量图时间序列预测早期RHF患者。所提模型分为两个阶段:第一阶段为基于自监督表征学习的肺活量图嵌入(SLSE)网络训练过程,其中变分自编码器的编码器(VAE-encoder)从数据增强的无标签数据中学习肺活量图时间序列的鲁棒低维表征;第二阶段将此低维表征与人口统计学信息融合,输入CatBoost分类器进行下游RHF预测任务。在从英国生物银行中精选的26,617人子集上进行训练与测试,该模型检测RHF的AUROC达到0.7501,展现出强大的群体层面区分能力。我们进一步在高风险临床亚组中评估模型,在74名慢性肾脏病(CKD)患者测试集上获得0.8194的AUROC,在64名心脏瓣膜病(VHD)患者测试集上获得0.8413的AUROC。这些结果凸显了模型在临床高风险人群中预测RHF的潜在应用价值。综上所述,本研究提出了一种结合肺活量图时间序列与人口统计学数据的自监督表征学习方法,在临床实践中展现出早期检测RHF的良好潜力。

0
下载
关闭预览

相关内容

Nature Medicine | 组学和人工智能推动肝病生物标志物的发现
专知会员服务
21+阅读 · 2021年6月18日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员