Unsupervised graph-level anomaly detection (UGLAD) is a critical and challenging task across various domains, such as social network analysis, anti-cancer drug discovery, and toxic molecule identification. However, existing methods often struggle to capture long-range dependencies efficiently and neglect the spectral information. Recently, selective state space models, particularly Mamba, have demonstrated remarkable advantages in capturing long-range dependencies with linear complexity and a selection mechanism. Motivated by their success across various domains, we propose GLADMamba, a novel framework that adapts the selective state space model into UGLAD field. We design a View-Fused Mamba (VFM) module with a Mamba-Transformer-style architecture to efficiently fuse information from different graph views with a selective state mechanism. We also design a Spectrum-Guided Mamba (SGM) module with a Mamba-Transformer-style architecture to leverage the Rayleigh quotient to guide the embedding refinement process, considering the spectral information for UGLAD. GLADMamba can dynamically focus on anomaly-related information while discarding irrelevant information for anomaly detection. To the best of our knowledge, this is the first work to introduce Mamba and explicit spectral information to UGLAD. Extensive experiments on 12 real-world datasets demonstrate that GLADMamba outperforms existing state-of-the-art methods, achieving superior performance in UGLAD. The code is available at https://github.com/Yali-Fu/GLADMamba.


翻译:无监督图级异常检测(UGLAD)是社交网络分析、抗癌药物发现和有毒分子识别等多个领域中的一项关键且具有挑战性的任务。然而,现有方法通常难以高效捕获长程依赖关系,并且忽略了谱信息。最近,选择性状态空间模型,特别是Mamba,在捕获长程依赖方面展现出显著优势,其具备线性复杂度和选择机制。受其在多个领域成功的启发,我们提出了GLADMamba,这是一个将选择性状态空间模型引入UGLAD领域的新颖框架。我们设计了一个具有Mamba-Transformer风格架构的视图融合Mamba(VFM)模块,以利用选择性状态机制高效融合来自不同图视图的信息。我们还设计了一个具有Mamba-Transformer风格架构的谱引导Mamba(SGM)模块,利用瑞利商来指导嵌入精炼过程,同时考虑了UGLAD的谱信息。GLADMamba能够动态聚焦于与异常相关的信息,同时丢弃与异常检测无关的信息。据我们所知,这是首次将Mamba和显式谱信息引入UGLAD的工作。在12个真实世界数据集上进行的大量实验表明,GLADMamba优于现有的最先进方法,在UGLAD中实现了卓越的性能。代码可在 https://github.com/Yali-Fu/GLADMamba 获取。

0
下载
关闭预览

相关内容

图增强生成(GraphRAG)
专知会员服务
33+阅读 · 2025年1月4日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员