As the global burden of Alzheimer's disease (AD) continues to grow, early and accurate detection has become increasingly critical, especially in regions with limited access to advanced diagnostic tools. We propose BRAINS (Biomedical Retrieval-Augmented Intelligence for Neurodegeneration Screening) to address this challenge. This novel system harnesses the powerful reasoning capabilities of Large Language Models (LLMs) for Alzheimer's detection and monitoring. BRAINS features a dual-module architecture: a cognitive diagnostic module and a case-retrieval module. The Diagnostic Module utilizes LLMs fine-tuned on cognitive and neuroimaging datasets -- including MMSE, CDR scores, and brain volume metrics -- to perform structured assessments of Alzheimer's risk. Meanwhile, the Case Retrieval Module encodes patient profiles into latent representations and retrieves similar cases from a curated knowledge base. These auxiliary cases are fused with the input profile via a Case Fusion Layer to enhance contextual understanding. The combined representation is then processed with clinical prompts for inference. Evaluations on real-world datasets demonstrate BRAINS effectiveness in classifying disease severity and identifying early signs of cognitive decline. This system not only shows strong potential as an assistive tool for scalable, explainable, and early-stage Alzheimer's disease detection, but also offers hope for future applications in the field.
翻译:随着阿尔茨海默病(AD)的全球负担持续增长,早期且准确的检测变得日益关键,尤其是在先进诊断工具获取有限的地区。为应对这一挑战,我们提出了BRAINS(用于神经退行性疾病筛查的生物医学检索增强智能系统)。这一创新系统利用大型语言模型(LLMs)的强大推理能力进行阿尔茨海默病的检测与监测。BRAINS采用双模块架构:认知诊断模块和病例检索模块。诊断模块利用在认知及神经影像数据集(包括MMSE、CDR评分和脑容量指标)上微调的LLMs,对阿尔茨海默病风险进行结构化评估。同时,病例检索模块将患者档案编码为潜在表示,并从精心构建的知识库中检索相似病例。这些辅助病例通过病例融合层与输入档案融合,以增强上下文理解。随后,结合临床提示对融合后的表示进行处理以进行推断。在真实世界数据集上的评估表明,BRAINS在疾病严重程度分类和认知衰退早期迹象识别方面具有显著效果。该系统不仅展现出作为可扩展、可解释且早期阿尔茨海默病检测辅助工具的强劲潜力,也为该领域未来的应用带来了希望。