This paper employs a Bayesian methodology to predict the results of soccer matches in real-time. Using sequential data of various events throughout the match, we utilize a multinomial probit regression in a novel framework to estimate the time-varying impact of covariates and to forecast the outcome. English Premier League data from eight seasons are used to evaluate the efficacy of our method. Different evaluation metrics establish that the proposed model outperforms potential competitors, which are inspired from existing statistical or machine learning algorithms. Additionally, we apply robustness checks to demonstrate the model's accuracy across various scenarios.
翻译:本文采用贝叶斯方法,通过实时数据预测足球比赛结果。利用比赛过程中的各种事件的序列数据,我们在一种新颖的框架中使用多项式Probit回归来估计协变量的时变影响,并预测结果。我们使用8个赛季的英超数据来评估我们方法的效果。不同的评估指标表明,所提出的模型优于现有统计或机器学习算法的潜在竞争对手。此外,我们进行鲁棒性检验以证明模型在各种情况下的准确性。