【SIGIR2018】五篇对抗训练文章

2018 年 7 月 9 日 专知
【SIGIR2018】五篇对抗训练文章

【导读】与大家分享五篇SIGIR2018上对抗(Adverarial)相关的文章。


Adversarial Personalized Ranking for Recommendation

Xiangnan He; Zhankui He; Xiaoyu Du; Tat-Seng Chua 


Item recommendation is a personalized ranking task. To this end, many recommender systems optimize models with pairwise ranking objectives, such as the Bayesian Personalized Ranking (BPR). Using matrix Factorization (MF) — the most widely used model in recommendation — as a demonstration, we show that optimizing it with BPR leads to a recommender model that is not robust. In particular, we find that the resultant model is highly vulnerable to adversarial perturbations on its model parameters, which implies the possibly large error in generalization. 


To enhance the robustness of a recommender model and thus improve its generalization performance, we propose a new optimization framework, namely Adversarial Personalized Ranking (APR). In short, our APR enhances the pairwise ranking method BPR by performing adversarial training. It can be interpreted as playing a minimax game, where the minimization of the BPR objective function meanwhile defends an adversary, which adds adversarial perturbations on model parameters to maximize the BPR objective function. To illustrate how it works, we implement APR on MF by adding adversarial perturbations on the embedding vectors of users and items. Extensive experiments on three public real-world datasets demonstrate the effectiveness of APR — by optimizing MF with APR, it outperforms BPR with a relative improvement of 11.2% on average and achieves state-of-the-art performance for item recommendation. Our implementation is available at: https://github.com/hexiangnan/adversarial_personalized_ranking




Deep Domain Adaptation Hashing with Adversarial Learning

Fuchen Long; Ting Yao; Qi Dai; Xinmei Tian; Jiebo Luo; Tao Mei 


The recent advances in deep neural networks have demonstrated high capability in a wide variety of scenarios. Nevertheless, finetuning deep models in a new domain still requires a significant amount of labeled data despite expensive labeling efforts. A valid question is how to leverage the source knowledge plus unlabeled or only sparsely labeled target data for learning a new model in target domain. The core problem is to bring the source and target distributions closer in the feature space. In the paper, we facilitate this issue in an adversarial learning framework, in which a domain discriminator is devised to handle domain shift. Particularly, we explore the learning in the context of hashing problem, which has been studied extensively due to its great efficiency in gigantic data. Specifically, a novel Deep Domain Adaptation Hashing with Adversarial learning (DeDAHA) architecture is presented, which mainly consists of three components: a deep convolutional neural networks (CNN) for learning basic image/frame representation followed by an adversary stream on one hand to optimize the domain discriminator, and on the other, to interact with each domain-specific hashing stream for encoding image representation to hash codes. The whole architecture is trained end-to-end by jointly optimizing two types of losses, i.e., triplet ranking loss to preserve the relative similarity ordering in the input triplets and adversarial loss to maximally fool the domain discriminator with the learnt source and target feature distributions. Extensive experiments are conducted on three domain transfer tasks, including cross-domain digits retrieval, image to image and image to video transfers, on several benchmarks. Our DeDAHA framework achieves superior results when compared to the state-of-the-art techniques.




Ranking Robustness under Adversarial Document Manipulations

Gregory Goren; Fiana Raiber; Moshe Tennenholtz ; Oren Kurland


For many queries in the Web retrieval setting there is an on-going ranking competition: authors manipulate their documents so as to promote them in rankings. Such competitions can have unwarranted effects not only in terms of retrieval effectiveness, but also in terms of ranking robustness. A case in point, rankings can (rapidly) change due to small indiscernible perturbations of documents. While there has been a recent growing interest in analyzing the robustness of classifiers to adversarial manipulations, there has not yet been a study of the robustness of relevance-ranking functions. We address this challenge by formally analyzing different definitions and aspects of the robustness of learning-to-rank-based ranking functions. For example, we formally show that increased regularization of linear ranking functions increases ranking robustness. This finding leads us to conjecture that decreased variance of any ranking function results in increased robustness. We propose several measures for quantifying ranking robustness and use them to analyze ranking competitions between documents’ authors. The empirical findings support our formal analysis and conjecture for both RankSVM and LambdaMART.


CAN: Enhancing Sentence Similarity Modeling with Collaborative and Adversarial Network

Qin Chen; Qinmin Hu; Jimmy Huang ; Liang He


The neural networks have attracted great attention for sentence similarity modeling in recent years. Most neural networks focus on the representation of each sentence, while the common features of a sentence pair are not well studied. In this paper, we propose a Collaborative and Adversarial Network (CAN), which explicitly models the common features between two sentences for enhancing sentence similarity modeling. To be specific, a common feature extractor is presented and embedded into our CAN model, which includes a generator and a discriminator playing a collaborative and adversarial game for common feature extraction. Experiments on three benchmark datasets, namely TREC-QA and WikiQA for answer selection and MSRP for paraphrase identification, show that our proposed model is effective to boost the performance of sentence similarity modeling. In particular, our proposed model outperforms the state-of-the-art approaches on TREC-QA without using any external resources or pre-training. For the other two datasets, our model is also comparable to if not better than the recent neural network approaches.




Cross Domain Regularization for Neural Ranking Models using Adversarial Learning

Daniel Cohen; Bhaskar Mitra; Katja Hofmann; Bruce Croft


Unlike traditional learning to rank models that depend on handcrafted features, neural representation learning models learn higher level features for the ranking task by training on large datasets. Their ability to learn new features directly from the data, however, may come at a price. Without any special supervision, these models learn relationships that may hold only in the domain from which the training data is sampled, and generalize poorly to domains not observed during training. We study the effectiveness of adversarial learning as a cross domain regularizer in the context of the ranking task. We use an adversarial discriminator and train our neural ranking model on a small set of domains. The discriminator provides a negative feedback signal to discourage the model from learning domain specific representations. Our experiments show consistently better performance on held out domains in the presence of the adversarial discriminator—sometimes up to 30% on precision@1.



-END-

专 · 知


人工智能领域26个主题知识资料全集获取加入专知人工智能服务群: 欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!




请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!




请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~




请关注专知公众号,获取人工智能的专业知识!

点击“阅读原文”,使用

登录查看更多
11

相关内容

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

0
8
下载
预览

In this article, we introduce a new mode for training Generative Adversarial Networks (GANs). Rather than minimizing the distance of evidence distribution $\tilde{p}(x)$ and the generative distribution $q(x)$, we minimize the distance of $\tilde{p}(x_r)q(x_f)$ and $\tilde{p}(x_f)q(x_r)$. This adversarial pattern can be interpreted as a Turing test in GANs. It allows us to use information of real samples during training generator and accelerates the whole training procedure. We even find that just proportionally increasing the size of discriminator and generator, it succeeds on 256x256 resolution without adjusting hyperparameters carefully.

0
3
下载
预览

Meta-learning enables a model to learn from very limited data to undertake a new task. In this paper, we study the general meta-learning with adversarial samples. We present a meta-learning algorithm, ADML (ADversarial Meta-Learner), which leverages clean and adversarial samples to optimize the initialization of a learning model in an adversarial manner. ADML leads to the following desirable properties: 1) it turns out to be very effective even in the cases with only clean samples; 2) it is model-agnostic, i.e., it is compatible with any learning model that can be trained with gradient descent; and most importantly, 3) it is robust to adversarial samples, i.e., unlike other meta-learning methods, it only leads to a minor performance degradation when there are adversarial samples. We show via extensive experiments that ADML delivers the state-of-the-art performance on two widely-used image datasets, MiniImageNet and CIFAR100, in terms of both accuracy and robustness.

0
4
下载
预览

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

0
14
下载
预览

Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones. In this work, we extend this framework by (i) forcing the learned feature extractor to be domain-invariant, and (ii) training it through data augmentation in the feature space, namely performing feature augmentation. While data augmentation in the image space is a well established technique in deep learning, feature augmentation has not yet received the same level of attention. We accomplish it by means of a feature generator trained by playing the GAN minimax game against source features. Results show that both enforcing domain-invariance and performing feature augmentation lead to superior or comparable performance to state-of-the-art results in several unsupervised domain adaptation benchmarks.

0
3
下载
预览

Estimating post-click conversion rate (CVR) accurately is crucial for ranking systems in industrial applications such as recommendation and advertising. Conventional CVR modeling applies popular deep learning methods and achieves state-of-the-art performance. However it encounters several task-specific problems in practice, making CVR modeling challenging. For example, conventional CVR models are trained with samples of clicked impressions while utilized to make inference on the entire space with samples of all impressions. This causes a sample selection bias problem. Besides, there exists an extreme data sparsity problem, making the model fitting rather difficult. In this paper, we model CVR in a brand-new perspective by making good use of sequential pattern of user actions, i.e., impression -> click -> conversion. The proposed Entire Space Multi-task Model (ESMM) can eliminate the two problems simultaneously by i) modeling CVR directly over the entire space, ii) employing a feature representation transfer learning strategy. Experiments on dataset gathered from Taobao's recommender system demonstrate that ESMM significantly outperforms competitive methods. We also release a sampling version of this dataset to enable future research. To the best of our knowledge, this is the first public dataset which contains samples with sequential dependence of click and conversion labels for CVR modeling.

0
6
下载
预览

We propose the Wasserstein Auto-Encoder (WAE)---a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which leads to a different regularizer than the one used by the Variational Auto-Encoder (VAE). This regularizer encourages the encoded training distribution to match the prior. We compare our algorithm with several other techniques and show that it is a generalization of adversarial auto-encoders (AAE). Our experiments show that WAE shares many of the properties of VAEs (stable training, encoder-decoder architecture, nice latent manifold structure) while generating samples of better quality, as measured by the FID score.

0
6
下载
预览

Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.

0
3
下载
预览

As a new way of training generative models, Generative Adversarial Nets (GAN) that uses a discriminative model to guide the training of the generative model has enjoyed considerable success in generating real-valued data. However, it has limitations when the goal is for generating sequences of discrete tokens. A major reason lies in that the discrete outputs from the generative model make it difficult to pass the gradient update from the discriminative model to the generative model. Also, the discriminative model can only assess a complete sequence, while for a partially generated sequence, it is non-trivial to balance its current score and the future one once the entire sequence has been generated. In this paper, we propose a sequence generation framework, called SeqGAN, to solve the problems. Modeling the data generator as a stochastic policy in reinforcement learning (RL), SeqGAN bypasses the generator differentiation problem by directly performing gradient policy update. The RL reward signal comes from the GAN discriminator judged on a complete sequence, and is passed back to the intermediate state-action steps using Monte Carlo search. Extensive experiments on synthetic data and real-world tasks demonstrate significant improvements over strong baselines.

0
5
下载
预览
小贴士
相关VIP内容
专知会员服务
23+阅读 · 2020年7月5日
专知会员服务
78+阅读 · 2020年4月26日
专知会员服务
55+阅读 · 2020年4月23日
专知会员服务
19+阅读 · 2019年12月13日
生成式对抗网络GAN异常检测
专知会员服务
53+阅读 · 2019年10月13日
强化学习最新教程,17页pdf
专知会员服务
50+阅读 · 2019年10月11日
相关论文
Adversarial Mutual Information for Text Generation
Boyuan Pan,Yazheng Yang,Kaizhao Liang,Bhavya Kailkhura,Zhongming Jin,Xian-Sheng Hua,Deng Cai,Bo Li
8+阅读 · 2020年6月30日
Training Generative Adversarial Networks Via Turing Test
Jianlin Su
3+阅读 · 2018年10月25日
A Dual Approach to Scalable Verification of Deep Networks
Krishnamurthy, Dvijotham,Robert Stanforth,Sven Gowal,Timothy Mann,Pushmeet Kohli
3+阅读 · 2018年8月3日
Chengxiang Yin,Jian Tang,Zhiyuan Xu,Yanzhi Wang
4+阅读 · 2018年6月8日
Pengda Qin,Weiran Xu,William Yang Wang
14+阅读 · 2018年5月24日
Riccardo Volpi,Pietro Morerio,Silvio Savarese,Vittorio Murino
3+阅读 · 2018年5月4日
Xiao Ma,Liqin Zhao,Guan Huang,Zhi Wang,Zelin Hu,Xiaoqiang Zhu,Kun Gai
6+阅读 · 2018年4月24日
Ilya Tolstikhin,Olivier Bousquet,Sylvain Gelly,Bernhard Schoelkopf
6+阅读 · 2018年3月12日
Ben Usman,Kate Saenko,Brian Kulis
3+阅读 · 2018年1月30日
Lantao Yu,Weinan Zhang,Jun Wang,Yong Yu
5+阅读 · 2017年8月25日
Top