Deep architectures consist of tens or hundreds of convolutional layers (CLs) that terminate with a few fully connected (FC) layers and an output layer representing the possible labels of a complex classification task. According to the existing deep learning (DL) rationale, the first CL reveals localized features from the raw data, whereas the subsequent layers progressively extract higher-level features required for refined classification. This article presents an efficient three-phase procedure for quantifying the mechanism underlying successful DL. First, a deep architecture is trained to maximize the success rate (SR). Next, the weights of the first several CLs are fixed and only the concatenated new FC layer connected to the output is trained, resulting in SRs that progress with the layers. Finally, the trained FC weights are silenced, except for those emerging from a single filter, enabling the quantification of the functionality of this filter using a correlation matrix between input labels and averaged output fields, hence a well-defined set of quantifiable features is obtained. Each filter essentially selects a single output label independent of the input label, which seems to prevent high SRs; however, it counterintuitively identifies a small subset of possible output labels. This feature is an essential part of the underlying DL mechanism and is progressively sharpened with layers, resulting in enhanced signal-to-noise ratios and SRs. Quantitatively, this mechanism is exemplified by the VGG-16, VGG-6, and AVGG-16. The proposed mechanism underlying DL provides an accurate tool for identifying each filter's quality and is expected to direct additional procedures to improve the SR, computational complexity, and latency of DL.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
66+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员