LLM-based agents are increasingly deployed for expert decision support, yet human-AI teams in high-stakes settings do not yet reliably outperform the best individual. We argue this complementarity gap reflects a fundamental mismatch: current agents are trained as answer engines, not as partners in the collaborative sensemaking through which experts actually make decisions. Sensemaking (the ability to co-construct causal explanations, surface uncertainties, and adapt goals) is the key capability that current training pipelines do not explicitly develop or evaluate. We propose Collaborative Causal Sensemaking (CCS) as a research agenda to develop this capability from the ground up, spanning new training environments that reward collaborative thinking, representations for shared human-AI mental models, and evaluation centred on trust and complementarity. Taken together, these directions shift MAS research from building oracle-like answer engines to cultivating AI teammates that co-reason with their human partners over the causal structure of shared decisions, advancing the design of effective human-AI teams.


翻译:基于大语言模型的智能体正日益被部署用于专家决策支持,然而在高风险场景中,人机团队尚未能稳定超越最佳个体表现。我们认为这一互补性差距反映了根本性的不匹配:当前智能体被训练为答案引擎,而非作为专家实际决策过程中协同意义建构的合作伙伴。意义建构(即共同构建因果解释、揭示不确定性及调整目标的能力)是当前训练流程未能明确开发或评估的关键能力。我们提出协同因果意义建构作为一项研究议程,旨在从零开始发展这一能力,涵盖奖励协同思维的新训练环境、共享人机心智模型的表征方法,以及以信任和互补性为核心的评估体系。这些方向共同将多智能体系统研究从构建类神谕的答案引擎,转向培育能够与人类伙伴就共同决策的因果结构进行协同推理的AI队友,从而推动高效人机团队的设计。

0
下载
关闭预览

相关内容

【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
51+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
51+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员