We develop new upper and lower bounds on the $\varepsilon$-entropy of a unit ball in a reproducing kernel Hilbert space induced by some Mercer kernel $K$. Our bounds are based on the behaviour of eigenvalues of a corresponding integral operator. In our approach we exploit an ellipsoidal structure of a unit ball in RKHS and a previous work on covering numbers of an ellipsoid in the euclidean space obtained by Dumer, Pinsker and Prelov. We present a number of applications of our main bound, such as its tightness for a practically important case of the Gaussian kernel. Further, we develop a series of lower bounds on the $\varepsilon$-entropy that can be established from a connection between covering numbers of a ball in RKHS and a quantization of a Gaussian Random Field that corresponds to the kernel $K$ by the Kosambi-Karhunen-Lo\`eve transform.
翻译:我们开发了一个单位球的新的上下界限。 我们的界限是基于一个相应的整体操作员的精华价值的行为。 在我们的方法中, 我们开发了一种在RKHS中一个单位球的双向结构, 以及以前在Dumer、 Pinsker 和 Prelov 获得的优立底空间中覆盖一个蛋白数的工作。 我们展示了我们的主要约束的一些应用, 例如它对于一个几乎重要的高山内核的紧凑性。 此外, 我们开发了一系列关于$varepsilon-entropy 的较低界限, 可以在覆盖RKHS中一个球的数量与Kosambi-Karhunen-Loven-Love变换中一个高斯随机场的重量值之间建立联系。