《DeepGCNs: Making GCNs Go as Deep as CNNs》G Li, M Müller, G Qian, I C. Delgadillo, A Abualshour, A Thabet, B Ghanem [KAUST] (2019)

成为VIP会员查看完整内容
0
21

相关内容

图卷积网络(简称GCN),由Thomas Kpif于2017年在论文Semi-supervised classification with graph convolutional networks中提出。它为图(graph)结构数据的处理提供了一个崭新的思路,将深度学习中常用于图像的卷积神经网络应用到图数据上。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

0
10
下载
预览

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{https://github.com/IBM/EvolveGCN}.

0
5
下载
预览

In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.

0
8
下载
预览

We present an end-to-end CNN architecture for fine-grained visual recognition called Collaborative Convolutional Network (CoCoNet). The network uses a collaborative filter after the convolutional layers to represent an image as an optimal weighted collaboration of features learned from training samples as a whole rather than one at a time. This gives CoCoNet more power to encode the fine-grained nature of the data with limited samples in an end-to-end fashion. We perform a detailed study of the performance with 1-stage and 2-stage transfer learning and different configurations with benchmark architectures like AlexNet and VggNet. The ablation study shows that the proposed method outperforms its constituent parts considerably and consistently. CoCoNet also outperforms the baseline popular deep learning based fine-grained recognition method, namely Bilinear-CNN (BCNN) with statistical significance. Experiments have been performed on the fine-grained species recognition problem, but the method is general enough to be applied to other similar tasks. Lastly, we also introduce a new public dataset for fine-grained species recognition, that of Indian endemic birds and have reported initial results on it. The training metadata and new dataset are available through the corresponding author.

0
5
下载
预览

For neural networks (NNs) with rectified linear unit (ReLU) or binary activation functions, we show that their training can be accomplished in a reduced parameter space. Specifically, the weights in each neuron can be trained on the unit sphere, as opposed to the entire space, and the threshold can be trained in a bounded interval, as opposed to the real line. We show that the NNs in the reduced parameter space are mathematically equivalent to the standard NNs with parameters in the whole space. The reduced parameter space shall facilitate the optimization procedure for the network training, as the search space becomes (much) smaller. We demonstrate the improved training performance using numerical examples.

0
3
下载
预览

Most existing video summarisation methods are based on either supervised or unsupervised learning. In this paper, we propose a reinforcement learning-based weakly supervised method that exploits easy-to-obtain, video-level category labels and encourages summaries to contain category-related information and maintain category recognisability. Specifically, We formulate video summarisation as a sequential decision-making process and train a summarisation network with deep Q-learning (DQSN). A companion classification network is also trained to provide rewards for training the DQSN. With the classification network, we develop a global recognisability reward based on the classification result. Critically, a novel dense ranking-based reward is also proposed in order to cope with the temporally delayed and sparse reward problems for long sequence reinforcement learning. Extensive experiments on two benchmark datasets show that the proposed approach achieves state-of-the-art performance.

0
3
下载
预览

Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across most datasets.

0
4
下载
预览

Weak supervision, e.g., in the form of partial labels or image tags, is currently attracting significant attention in CNN segmentation as it can mitigate the lack of full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network output, for instance, on the size of the target region, can leverage unlabeled data, guiding training with domain-specific knowledge. Inequality constraints are very flexible because they do not assume exact prior knowledge. However,constrained Lagrangian dual optimization has been largely avoided in deep networks, mainly for computational tractability reasons.To the best of our knowledge, the method of Pathak et al. is the only prior work that addresses deep CNNs with linear constraints in weakly supervised segmentation. It uses the constraints to synthesize fully-labeled training masks (proposals)from weak labels, mimicking full supervision and facilitating dual optimization.We propose to introduce a differentiable term, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From constrained-optimization perspective, our simple approach is not optimal as there is no guarantee that the constraints are satisfied. However, surprisingly,it yields substantially better results than the proposal-based constrained CNNs, while reducing the computational demand for training.In the context of cardiac images, we reached a segmentation performance close to full supervision using a fraction (0.1%) of the full ground-truth labels and image-level tags.While our experiments focused on basic linear constraints such as the target-region size and image tags, our framework can be easily extended to other non-linear constraints.Therefore, it has the potential to close the gap between weakly and fully supervised learning in semantic image segmentation.

0
4
下载
预览

We introduce Spatial-Temporal Memory Networks (STMN) for video object detection. At its core, we propose a novel Spatial-Temporal Memory module (STMM) as the recurrent computation unit to model long-term temporal appearance and motion dynamics. The STMM's design enables the integration of ImageNet pre-trained backbone CNN weights for both the feature stack as well as the prediction head, which we find to be critical for accurate detection. Furthermore, in order to tackle object motion in videos, we propose a novel MatchTrans module to align the spatial-temporal memory from frame to frame. We compare our method to state-of-the-art detectors on ImageNet VID, and conduct ablative studies to dissect the contribution of our different design choices. We obtain state-of-the-art results with the VGG backbone, and competitive results with the ResNet backbone. To our knowledge, this is the first video object detector that is equipped with an explicit memory mechanism to model long-term temporal dynamics.

0
3
下载
预览

The Deep Q-Network proposed by Mnih et al. [2015] has become a benchmark and building point for much deep reinforcement learning research. However, replicating results for complex systems is often challenging since original scientific publications are not always able to describe in detail every important parameter setting and software engineering solution. In this paper, we present results from our work reproducing the results of the DQN paper. We highlight key areas in the implementation that were not covered in great detail in the original paper to make it easier for researchers to replicate these results, including termination conditions and gradient descent algorithms. Finally, we discuss methods for improving the computational performance and provide our own implementation that is designed to work with a range of domains, and not just the original Arcade Learning Environment [Bellemare et al., 2013].

0
3
下载
预览
小贴士
相关资讯
动态知识图谱补全论文合集
专知
38+阅读 · 2019年4月18日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
6+阅读 · 2019年1月31日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
12+阅读 · 2018年10月30日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
17+阅读 · 2018年9月24日
赛尔推荐 | 第22期
哈工大SCIR
6+阅读 · 2018年6月6日
讲透RCNN, Fast-RCNN, Faster-RCNN,将CNN用于目标检测
数据挖掘入门与实战
18+阅读 · 2018年4月20日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
38+阅读 · 2018年2月21日
相关论文
Reasoning on Knowledge Graphs with Debate Dynamics
Marcel Hildebrandt,Jorge Andres Quintero Serna,Yunpu Ma,Martin Ringsquandl,Mitchell Joblin,Volker Tresp
10+阅读 · 2020年1月2日
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
Aldo Pareja,Giacomo Domeniconi,Jie Chen,Tengfei Ma,Toyotaro Suzumura,Hiroki Kanezashi,Tim Kaler,Tao B. Schardl,Charles E. Leiserson
5+阅读 · 2019年11月18日
HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs
Naganand Yadati,Madhav Nimishakavi,Prateek Yadav,Vikram Nitin,Anand Louis,Partha Talukdar
8+阅读 · 2019年5月22日
CoCoNet: A Collaborative Convolutional Network
Tapabrata Chakraborti,Brendan McCane,Steven Mills,Umapada Pal
5+阅读 · 2019年1月28日
Tong Qin,Ling Zhou,Dongbin Xiu
3+阅读 · 2018年8月17日
Video Summarisation by Classification with Deep Reinforcement Learning
Kaiyang Zhou,Tao Xiang,Andrea Cavallaro
3+阅读 · 2018年7月9日
Tim Dettmers,Pasquale Minervini,Pontus Stenetorp,Sebastian Riedel
4+阅读 · 2018年7月4日
Hoel Kervadec,Jose Dolz,Meng Tang,Eric Granger,Yuri Boykov,Ismail Ben Ayed
4+阅读 · 2018年5月12日
Fanyi Xiao,Yong Jae Lee
3+阅读 · 2017年12月18日
Melrose Roderick,James MacGlashan,Stefanie Tellex
3+阅读 · 2017年11月20日
Top