The Boolean satisfiability problem (SAT) is of central importance in both theory and practice. Yet, most provable guarantees for quantum algorithms rely exclusively on Grover-type methods that cap the possible advantage at only quadratic speed-ups, making the search for approaches that surpass this quadratic barrier a key challenge. In this light, this work presents a rigorous worst-case runtime analysis of a recently introduced measurement-driven quantum SAT solver. Importantly, this quantum algorithm does not exclusively rely on Grover-type methods and shows promising numerical performance. Our analysis establishes that the algorithm's runtime depends on an exponential trade-off between two key properties: the spectral gap of the associated Hamiltonian and the success probability of the driving measurements. We show that this trade-off can be systematically controlled by a tunable rotation angle. Beyond establishing a worst-case runtime expression, this work contributes significant algorithmic improvements. First, we develop a new readout routine that efficiently finds a solution even for instances with multiple satisfying assignments. Second, a measurement parallelization scheme, based on perfect hash families, is introduced. Third, we establish an amplitude-amplified version of the measurement-driven algorithm. Finally, we demonstrate the practical utility of our framework: By suitably scheduling the algorithm's parameters, we show that its runtime collapses from exponential to polynomial on a special class of SAT instances, consistent with their known classical tractability. A problem we leave open is to establish a non-trivial lower bound on the spectral gap as a function of the rotation angle. Resolving this directly translates into an improved worst-case runtime, potentially realizing a super-quadratic quantum advantage.


翻译:布尔可满足性问题(SAT)在理论与实践层面均具有核心重要性。然而,现有量子算法的可证明性能保证主要依赖于Grover型方法,其优势上限仅为二次加速,因此探索突破该二次屏障的算法成为关键挑战。鉴于此,本文对近期提出的一种测量驱动量子SAT求解器进行了严格的最坏情况运行时分析。该量子算法不完全依赖Grover型方法,并展现出良好的数值性能。我们的分析表明,算法运行时间取决于两个关键特性之间的指数权衡:关联哈密顿量的谱间隙与驱动测量的成功概率。我们证明该权衡可通过可调旋转角进行系统性调控。除建立最坏情况运行时表达式外,本研究还提出了重要的算法改进:首先,开发了一种新型读出流程,能高效求解具有多个可满足赋值的实例;其次,基于完美哈希族引入了测量并行化方案;第三,构建了测量驱动算法的振幅放大版本;最后,通过合理调度算法参数,我们证明在特定SAT实例类上(其经典可解性已知),算法运行时间可从指数级坍缩至多项式级。一个待解决的开放问题是建立谱间隙关于旋转角的非平凡下界,该问题的解决将直接转化为改进的最坏情况运行时,并可能实现超二次量子优势。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
CVPR 2019:精确目标检测的不确定边界框回归
AI科技评论
13+阅读 · 2019年9月16日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员