Preference-based Reinforcement Learning (PbRL) enables policy learning through simple queries comparing trajectories from a single policy. While human responses to these queries make it possible to learn policies aligned with human preferences, PbRL suffers from low query efficiency, as policy bias limits trajectory diversity and reduces the number of discriminable queries available for learning preferences. This paper identifies preference discriminability, which quantifies how easily a human can judge which trajectory is closer to their ideal behavior, as a key metric for improving query efficiency. To address this, we move beyond comparisons within a single policy and instead generate queries by comparing trajectories from multiple policies, as training them from scratch promotes diversity without policy bias. We propose Discriminability-Aware Policy-to-Policy Preference-Based Efficient Reinforcement Learning (DAPPER), which integrates preference discriminability with trajectory diversification achieved by multiple policies. DAPPER trains new policies from scratch after each reward update and employs a discriminator that learns to estimate preference discriminability, enabling the prioritized sampling of more discriminable queries. During training, it jointly maximizes the preference reward and preference discriminability score, encouraging the discovery of highly rewarding and easily distinguishable policies. Experiments in simulated and real-world legged robot environments demonstrate that DAPPER outperforms previous methods in query efficiency, particularly under challenging preference discriminability conditions.


翻译:基于偏好的强化学习(PbRL)通过比较单一策略产生的轨迹的简单查询实现策略学习。尽管人类对这些查询的响应使得学习符合人类偏好的策略成为可能,但PbRL存在查询效率低下的问题,因为策略偏差限制了轨迹多样性,并减少了可用于学习偏好的可区分查询数量。本文提出偏好可区分性——量化人类判断哪个轨迹更接近其理想行为的难易程度——作为提升查询效率的关键指标。为解决此问题,我们突破单一策略内的比较,转而通过比较多个策略产生的轨迹生成查询,因为从头训练这些策略可在无策略偏差的情况下促进多样性。我们提出可区分性感知策略间偏好高效强化学习(DAPPER),该方法将偏好可区分性与多策略实现的轨迹多样化相结合。DAPPER在每次奖励更新后从头训练新策略,并采用学习估计偏好可区分性的判别器,从而实现对更具可区分性查询的优先采样。在训练过程中,它同时最大化偏好奖励和偏好可区分性分数,促进发现高奖励且易于区分的策略。在仿真和真实世界足式机器人环境中的实验表明,DAPPER在查询效率上优于现有方法,尤其在具有挑战性的偏好可区分性条件下表现突出。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
【ECCV2022】对比视觉Transformer的在线持续学习
专知会员服务
23+阅读 · 2022年7月29日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关VIP内容
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
【ECCV2022】对比视觉Transformer的在线持续学习
专知会员服务
23+阅读 · 2022年7月29日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员