For the identification of switched systems with a measured switching signal, this work aims to analyze the effect of switching strategies on the estimation error. The data for identification is assumed to be collected from globally asymptotically or marginally stable switched systems under switches that are arbitrary or subject to an average dwell time constraint. Then the switched system is estimated by the least-squares (LS) estimator. To capture the effect of the parameters of the switching strategies on the LS estimation error, finite-sample error bounds are developed in this work. The obtained error bounds show that the estimation error is logarithmic of the switching parameters when there are only stable modes; however, when there are unstable modes, the estimation error bound can increase linearly as the switching parameter changes. This suggests that in the presence of unstable modes, the switching strategy should be properly designed to avoid the significant increase of the estimation error.


翻译:对于使用测量的切换信号的切换系统,这项工作旨在分析切换策略对估计误差的影响。 用于鉴别的数据假定是从任意或平均停留时间限制的开关下的全球零位或略为稳定的开关系统中收集的。 然后, 换换系统由最小平方估计值估算值估算。 要捕捉切换策略参数对LS估计误差的影响, 这项工作会开发出有限抽样误差界限。 获得的误差约束显示, 当只有稳定模式时, 估计误差是切换参数的对数; 但是, 当存在不稳定模式时, 估计误差会随着切换参数的变化而线性增加。 这意味着, 在存在不稳定模式的情况下, 切换策略应该设计得当避免估计误差的显著增加 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2022年8月17日
Arxiv
0+阅读 · 2022年8月16日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员