Beyond providing accurate movements, achieving smooth motion trajectories is a long-standing goal of robotics control theory for arms aiming to replicate natural human movements. Drawing inspiration from biological agents, whose reaching control networks effortlessly give rise to smooth and precise movements, can simplify these control objectives for robot arms. Neuromorphic processors, which mimic the brain's computational principles, are an ideal platform to approximate the accuracy and smoothness of biological controllers while maximizing their energy efficiency and robustness. However, the incompatibility of conventional control methods with neuromorphic hardware limits the computational efficiency and explainability of their existing adaptations. In contrast, the neuronal subnetworks underlying smooth and accurate reaching movements are effective, minimal, and inherently compatible with neuromorphic hardware. In this work, we emulate these networks with a biologically realistic spiking neural network for motor control on neuromorphic hardware. The proposed controller incorporates experimentally-identified short-term synaptic plasticity and specialized neurons that regulate sensory feedback gain to provide smooth and accurate joint control across a wide motion range. Concurrently, it preserves the minimal complexity of its biological counterpart and is directly deployable on Intel's neuromorphic processor. Using the joint controller as a building block and inspired by joint coordination in human arms, we scaled up this approach to control real-world robot arms. The trajectories and smooth, bell-shaped velocity profiles of the resulting motions resembled those of humans, verifying the biological relevance of the controller. Notably, the method achieved state-of-the-art control performance while decreasing the motion jerk by 19% to improve motion smoothness.


翻译:除了提供准确的移动之外,实现平稳运动轨迹是机器人控制理论的长期目标,目的是复制人类自然运动。从生物剂中汲取灵感,这些生物剂的到达控制网络不费力地导致平稳和精确的移动。它们能够简化这些机器人武器的控制目标。模仿大脑计算原理的神经畸形处理器是一个理想的平台,可以估计生物控制器的准确和顺利性,同时最大限度地提高它们的能源效率和稳健性。然而,常规控制方法与神经定型硬件的不兼容性限制了其现有调整的计算效率和解释性。相比之下,光滑和准确实现运动的神经剂的神经子网络下运行效率是有效、微小的,而且与神经定型硬件具有内在的兼容性。在这项工作中,我们模仿这些网络,以生物现实现实的螺旋神经网络网络来控制神经畸形的神经元控制,同时通过生物正态的正态动作来改善人类运动的精度和直径直的直径直方向控制。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员