The development of accurate and transferable machine learning (ML) potentials for predicting molecular energetics is a challenging task. The process of data generation to train such ML potentials is a task neither well understood nor researched in detail. In this work, we present a fully automated approach for the generation of datasets with the intent of training universal ML potentials. It is based on the concept of active learning (AL) via Query by Committee (QBC), which uses the disagreement between an ensemble of ML potentials to infer the reliability of the ensemble's prediction. QBC allows the presented AL algorithm to automatically sample regions of chemical space where the ML potential fails to accurately predict the potential energy. AL improves the overall fitness of ANAKIN-ME (ANI) deep learning potentials in rigorous test cases by mitigating human biases in deciding what new training data to use. AL also reduces the training set size to a fraction of the data required when using naive random sampling techniques. To provide validation of our AL approach we develop the COMP6 benchmark (publicly available on GitHub), which contains a diverse set of organic molecules. Through the AL process, it is shown that the AL-based potentials perform as well as the ANI-1 potential on COMP6 with only 10% of the data, and vastly outperforms ANI-1 with 25% the amount of data. Finally, we show that our proposed AL technique develops a universal ANI potential (ANI-1x) that provides accurate energy and force predictions on the entire COMP6 benchmark. This universal ML potential achieves a level of accuracy on par with the best ML potentials for single molecule or materials, while remaining applicable to the general class of organic molecules comprised of the elements CHNO.


翻译:开发准确和可转让的机器学习潜力以预测分子能能(ML)是具有挑战性的任务。为培训这种ML潜力而生成数据的过程既未很好理解,也未进行详细研究。在这项工作中,我们展示了一种完全自动化的生成数据集的方法,目的是培训通用ML潜力。它以委员会(QBC)通过查询(AL)积极学习(AL)的概念为基础,该概念使用了混合ML潜力组合之间的分歧,以推断合金预测的可靠性。QBC允许展示的AL算法自动抽样化学空间区域,而ML潜力无法准确预测潜在的能量。ALL(A)在严格测试案例中提高了ANAKIN-ME(ANI)的深度学习潜力,通过减少人类在决定使用哪些新培训数据时的偏差。另外,还利用天性随机采样技术,将培训设定的大小降至所需的数据的一部分。为了验证我们的AL方法,我们开发了 COM6 基准(在GitHub上公开提供的全部可应用的 AL AL ),该数值只显示一个不同的ALI-IL 潜在值, 的数值在10 AL-IL 数据序列中显示一个不同的内部数据序列中,该数值中显示一个可能的数值值。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
9+阅读 · 2019年4月19日
Learning to Importance Sample in Primary Sample Space
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Arxiv
9+阅读 · 2019年4月19日
Learning to Importance Sample in Primary Sample Space
Arxiv
11+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员