As artificial intelligence (AI) becomes more deeply integrated into educational ecosystems, the demand for scalable solutions that enable personalized learning continues to grow. These architectures must support continuous data flows that power personalized learning and access to meaningful insights to advance learner success at scale. At the National AI Institute for Adult Learning and Online Education (AI-ALOE), we have developed an Architecture for AI-Augmented Learning (A4L) to support analysis and personalization of online education for adult learners. A4L1.0, an early implementation by Georgia Tech's Design Intelligence Laboratory, demonstrated how the architecture supports analysis of meso- and micro-learning by integrating data from Learning Management Systems (LMS) and AI tools. These pilot studies informed the design of A4L2.0. In this chapter, we describe A4L2.0 that leverages 1EdTech Consortium's open standards such as Edu-API, Caliper Analytics, and Learning Tools Interoperability (LTI) to enable secure, interoperable data integration across data systems like Student Information Systems (SIS), LMS, and AI tools. The A4L2.0 data pipeline includes modules for data ingestion, preprocessing, organization, analytics, and visualization.


翻译:随着人工智能(AI)更深层次地融入教育生态系统,对支持个性化学习的可扩展解决方案的需求持续增长。这些架构必须支持持续的数据流,以驱动个性化学习并获取有意义的洞察,从而大规模提升学习者的成功率。在美国国家成人学习与在线教育人工智能研究所(AI-ALOE)中,我们开发了一套面向AI增强学习的架构(A4L),以支持对成人学习者在线教育的分析与个性化。A4L1.0作为佐治亚理工学院设计智能实验室的早期实现,展示了该架构如何通过整合学习管理系统(LMS)和AI工具的数据来支持中观与微观学习分析。这些试点研究为A4L2.0的设计提供了依据。在本章中,我们描述了A4L2.0,它利用1EdTech联盟的开放标准(如Edu-API、Caliper Analytics和学习工具互操作性(LTI)),实现跨学生信息系统(SIS)、LMS和AI工具等数据系统的安全、可互操作的数据集成。A4L2.0的数据管道包括数据摄取、预处理、组织、分析和可视化模块。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员