深度神经网络在拥有大量数据集和足够的计算资源的情况下能够取得巨大的成功。然而,他们快速学习新概念的能力相当有限。元学习是解决这一问题的一种方法,通过使网络学会如何学习。令人兴奋的深度元学习领域正在高速发展,但缺乏对当前技术的统一、深刻的概述。这项工作就是这样。在为读者提供理论基础之后,我们研究和总结了主要的方法,这些方法被分为i)度量;ii)模型;和iii)基于优化的技术。此外,我们确定了主要的开放挑战,如在异构基准上的性能评估,以及元学习计算成本的降低。

摘要:

近年来,深度学习技术在各种任务上取得了显著的成功,包括游戏(Mnih et al., 2013; Silver et al., 2016),图像识别(Krizhevsky et al., 2012; He et al., 2015)和机器翻译(Wu et al., 2016)。尽管取得了这些进展,但仍有大量的挑战有待解决,例如实现良好性能所需的大量数据和训练。这些要求严重限制了深度神经网络快速学习新概念的能力,这是人类智能的定义方面之一(Jankowski等人,2011;(Lake等,2017)。

元学习被认为是克服这一挑战的一种策略(Naik and Mammone, 1992; Schmidhuber, 1987; Thrun, 1998)。其关键思想是元学习主体随着时间的推移提高自己的学习能力,或者等价地说,学会学习。学习过程主要与任务(一组观察)有关,并且发生在两个不同的层次上:内部和外部。在内部层,一个新的任务被提出,代理试图快速地从训练观察中学习相关的概念。这种快速的适应是通过在外部层次的早期任务中积累的知识来促进的。因此,内部层关注的是单个任务,而外部层关注的是多个任务。

从历史上看,元学习这个术语的使用范围很广。从最广泛的意义上说,它概括了所有利用之前的学习经验以更快地学习新任务的系统(Vanschoren, 2018)。这个广泛的概念包括更传统的机器学习算法选择和hyperparameter优化技术(Brazdil et al ., 2008)。然而,在这项工作中,我们专注于元学习领域的一个子集,该领域开发元学习程序来学习(深度)神经网络的良好诱导偏差。1从今以后,我们使用术语深元学习指元学习的领域。

深度元学习领域正在快速发展,但它缺乏一个连贯、统一的概述,无法提供对关键技术的详细洞察。Vanschoren(2018)对元学习技术进行了调查,其中元学习被广泛使用,限制了对深度元学习技术的描述。此外,在调查发表后,深度元学习领域也出现了许多令人兴奋的发展。Hospedales等人(2020)最近的一项调查采用了与我们相同的深度元学习概念,但目标是一个广泛的概述,而忽略了各种技术的技术细节。

我们试图通过提供当代深度元学习技术的详细解释来填补这一空白,使用统一的符号。此外,我们确定了当前的挑战和未来工作的方向。更具体地说,我们覆盖了监督和强化学习领域的现代技术,已经实现了最先进的性能,在该领域获得了普及,并提出了新的想法。由于MAML (Finn et al., 2017)和相关技术对该领域的影响,我们给予了格外的关注。本研究可作为深度元学习领域的系统性介绍,并可作为该领域资深研究人员的参考资料。在整个过程中,我们将采用Vinyals(2017)所使用的分类法,该分类法确定了三种深度元学习方法:i)度量、ii)模型和iii)基于优化的元学习技术。

成为VIP会员查看完整内容
0
40

相关内容

Meta Learning,元学习,也叫 Learning to Learn(学会学习)。是继Reinforcement Learning(增强学习)之后又一个重要的研究分支。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

摘要

本文综述了迁移学习在强化学习问题设置中的应用。RL已经成为序列决策问题的关键的解决方案。随着RL在各个领域的快速发展。包括机器人技术和游戏,迁移学习是通过利用和迁移外部专业知识来促进学习过程来帮助RL的一项重要技术。在这篇综述中,我们回顾了在RL领域中迁移学习的中心问题,提供了一个最先进技术的系统分类。我们分析他们的目标,方法,应用,以及在RL框架下这些迁移学习技术将是可接近的。本文从RL的角度探讨了迁移学习与其他相关话题的关系,并探讨了RL迁移学习的潜在挑战和未来发展方向。

关键词:迁移学习,强化学习,综述,机器学习

介绍

强化学习(RL)被认为是解决连续决策任务的一种有效方法,在这种方法中,学习主体通过与环境相互作用,通过[1]来提高其性能。源于控制论并在计算机科学领域蓬勃发展的RL已被广泛应用于学术界和工业界,以解决以前难以解决的任务。此外,随着深度学习的快速发展,应用深度学习服务于学习任务的集成框架在近年来得到了广泛的研究和发展。DL和RL的组合结构称为深度强化学习[2](Deep Reinforcement Learning, DRL)。

DRL在机器人控制[3]、[4]、玩[5]游戏等领域取得了巨大的成功。在医疗保健系统[6]、电网[7]、智能交通系统[8]、[9]等领域也具有广阔的应用前景。

在这些快速发展的同时,DRL也面临着挑战。在许多强化学习应用中,环境模型通常是未知的,只有收集到足够的交互经验,agent才能利用其对环境的知识来改进其性能。由于环境反馈的部分可观察性、稀疏性或延迟性以及高维观察和/或行动空间等问题,学习主体在没有利用任何先验知识的情况下寻找好的策略是非常耗时的。因此,迁移学习作为一种利用外部专业知识来加速学习过程的技术,在强化学习中成为一个重要的课题。

在监督学习(SL)领域[10]中,TL得到了广泛的研究。与SL场景相比,由于MDP环境中涉及的组件更多,RL中的TL(尤其是DRL中的TL)通常更复杂。MDP的组件(知识来自何处)可能与知识转移到何处不同。此外,专家知识也可以采取不同的形式,以不同的方式转移,特别是在深度神经网络的帮助下。随着DRL的快速发展,以前总结用于RL的TL方法的努力没有包括DRL的最新发展。注意到所有这些不同的角度和可能性,我们全面总结了在深度强化学习(TL in DRL)领域迁移学习的最新进展。我们将把它们分成不同的子主题,回顾每个主题的理论和应用,并找出它们之间的联系。

本综述的其余部分组织如下:在第2节中,我们介绍了强化学习的背景,关键的DRL算法,并带来了这篇综述中使用的重要术语。我们还简要介绍了与TL不同但又紧密相关的相关研究领域(第2.3节)。

在第3节中,我们采用多种视角来评价TL方法,提供了对这些方法进行分类的不同方法(第3.1节),讨论了迁移源和目标之间的潜在差异(第3.2节),并总结了评价TL有效性的常用指标(第3.3节)。

第4节详细说明了DRL领域中最新的TL方法。特别是,所讨论的内容主要是按照迁移知识的形式组织的,如成型的奖励(4.1节)、先前的演示(4.2节)、专家策略(4.3节),或者按照转移发生的方式组织的,如任务间映射(4.4节)、学习可转移表示(4.5节和4.6节)等。我们在第5节讨论了TL在DRL中的应用,并在第6节提供了一些值得研究的未来展望。

成为VIP会员查看完整内容
0
33

当前的深度学习研究以基准评价为主。如果一种方法在专门的测试集上有良好的经验表现,那么它就被认为是有利的。这种心态无缝地反映在持续学习的重现领域,在这里研究的是持续到达的基准数据集。核心挑战是如何保护之前获得的表示,以免由于迭代参数更新而出现灾难性地遗忘的情况。然而,各个方法的比较是与现实应用程序隔离的,通常通过监视累积的测试集性能来判断。封闭世界的假设仍然占主导地位。假设在部署过程中,一个模型保证会遇到来自与用于训练的相同分布的数据。这带来了一个巨大的挑战,因为众所周知,神经网络会对未知的实例提供过于自信的错误预测,并在数据损坏的情况下崩溃。在这个工作我们认为值得注意的教训来自开放数据集识别,识别的统计偏差以外的数据观测数据集,和相邻的主动学习领域,数据增量查询等预期的性能收益最大化,这些常常在深度学习的时代被忽略。基于这些遗忘的教训,我们提出了一个统一的观点,以搭建持续学习,主动学习和开放集识别在深度神经网络的桥梁。我们的结果表明,这不仅有利于每个个体范式,而且突出了在一个共同框架中的自然协同作用。我们从经验上证明了在减轻灾难性遗忘、主动学习中查询数据、选择任务顺序等方面的改进,同时在以前提出的方法失败的地方展示了强大的开放世界应用。

https://www.zhuanzhi.ai/paper/e5bee7a1e93a93ef9139966643317e1c

概述:

随着实用机器学习系统的不断成熟,社区发现了对持续学习[1]、[2]的兴趣。与广泛练习的孤立学习不同,在孤立学习中,系统的算法训练阶段被限制在一个基于先前收集的i.i.d数据集的单一阶段,持续学习需要利用随着时间的推移而到来的数据的学习过程。尽管这种范式已经在许多机器学习系统中找到了各种应用,回顾一下最近关于终身机器学习[3]的书,深度学习的出现似乎已经将当前研究的焦点转向了一种称为“灾难性推理”或“灾难性遗忘”的现象[4],[5],正如最近的评论[6],[7],[8],[9]和对深度持续学习[8],[10],[11]的实证调查所表明的那样。后者是机器学习模型的一个特殊效应,机器学习模型贪婪地根据给定的数据群更新参数,比如神经网络迭代地更新其权值,使用随机梯度估计。当包括导致数据分布发生任何变化的不断到达的数据时,学习到的表示集被单向引导,以接近系统当前公开的数据实例上的任何任务的解决方案。自然的结果是取代以前学到的表征,导致突然忘记以前获得的信息。

尽管目前的研究主要集中在通过专门机制的设计来缓解持续深度学习中的这种遗忘,但我们认为,一种非常不同形式的灾难性遗忘的风险正在增长,即忘记从过去的文献中吸取教训的危险。尽管在连续的训练中保留神经网络表示的努力值得称赞,但除了只捕获灾难性遗忘[12]的度量之外,我们还高度关注了实际的需求和权衡,例如包括内存占用、计算成本、数据存储成本、任务序列长度和训练迭代次数等。如果在部署[14]、[15]、[16]期间遇到看不见的未知数据或小故障,那么大多数当前系统会立即崩溃,这几乎可以被视为误导。封闭世界的假设似乎无所不在,即认为模型始终只会遇到与训练过程中遇到的数据分布相同的数据,这在真实的开放世界中是非常不现实的,因为在开放世界中,数据可以根据不同的程度变化,而这些变化是不现实的,无法捕获到训练集中,或者用户能够几乎任意地向系统输入预测信息。尽管当神经网络遇到不可见的、未知的数据实例时,不可避免地会产生完全没有意义的预测,这是众所周知的事实,已经被暴露了几十年了,但是当前的努力是为了通过不断学习来规避这一挑战。选择例外尝试解决识别不可见的和未知的示例、拒绝荒谬的预测或将它们放在一边供以后使用的任务,通常总结在开放集识别的伞下。然而,大多数现有的深度连续学习系统仍然是黑盒,不幸的是,对于未知数据的错误预测、数据集的异常值或常见的图像损坏[16],这些系统并没有表现出理想的鲁棒性。

除了目前的基准测试实践仍然局限于封闭的世界之外,另一个不幸的趋势是对创建的持续学习数据集的本质缺乏理解。持续生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及类增量持续学习的大部分工作(如[12]中给出的工作,[23],[24],[25],[26],[27],[28])一般调查sequentialized版本的经过时间考验的视觉分类基准如MNIST [29], CIFAR[30]或ImageNet[31],单独的类只是分成分离集和序列所示。为了在基准中保持可比性,关于任务排序的影响或任务之间重叠的影响的问题通常会被忽略。值得注意的是,从邻近领域的主动机器学习(半监督学习的一种特殊形式)中吸取的经验教训,似乎并没有整合到现代的连续学习实践中。在主动学习中,目标是学会在让系统自己查询接下来要包含哪些数据的挑战下,逐步地找到与任务解决方案最接近的方法。因此,它可以被视为缓解灾难性遗忘的对抗剂。当前的持续学习忙于维护在每个步骤中获得的信息,而不是无休止地积累所有的数据,而主动学习则关注于识别合适的数据以纳入增量训练系统的补充问题。尽管在主动学习方面的早期开创性工作已经迅速识别出了通过使用启发式[32]、[33]、[34]所面临的强大应用的挑战和陷阱,但后者在深度学习[35]、[36]、[37]、[38]的时代再次占据主导地位,这些挑战将再次面临。

在这项工作中,我们第一次努力建立一个原则性和巩固的深度持续学习、主动学习和在开放的世界中学习的观点。我们首先单独回顾每一个主题,然后继续找出在现代深度学习中似乎较少受到关注的以前学到的教训。我们将继续争论,这些看似独立的主题不仅从另一个角度受益,而且应该结合起来看待。在这个意义上,我们建议将当前的持续学习实践扩展到一个更广泛的视角,将持续学习作为一个总括性术语,自然地包含并建立在先前的主动学习和开放集识别工作之上。本文的主要目的并不是引入新的技术或提倡一种特定的方法作为通用的解决方案,而是对最近提出的神经网络[39]和[40]中基于变分贝叶斯推理的方法进行了改进和扩展,以说明一种走向全面框架的可能选择。重要的是,它作为论证的基础,努力阐明生成建模作为深度学习系统关键组成部分的必要性。我们强调了在这篇论文中发展的观点的重要性,通过实证证明,概述了未来研究的含义和有前景的方向。

成为VIP会员查看完整内容
0
38

本文综述了元学习在图像分类、自然语言处理和机器人技术等领域的应用。与深度学习不同,元学习使用较少的样本数据集,并考虑进一步改进模型泛化以获得更高的预测精度。我们将元学习模型归纳为三类: 黑箱适应模型、基于相似度的方法模型和元学习过程模型。最近的应用集中在将元学习与贝叶斯深度学习和强化学习相结合,以提供可行的集成问题解决方案。介绍了元学习方法的性能比较,并讨论了今后的研究方向。

成为VIP会员查看完整内容
0
98

智能视频监控(IVS)是当前计算机视觉和机器学习领域的一个活跃研究领域,为监控操作员和取证视频调查者提供了有用的工具。人的再识别(PReID)是IVS中最关键的问题之一,它包括识别一个人是否已经通过网络中的摄像机被观察到。PReID的解决方案有无数的应用,包括检索显示感兴趣的个体的视频序列,甚至在多个摄像机视图上进行行人跟踪。文献中已经提出了不同的技术来提高PReID的性能,最近研究人员利用了深度神经网络(DNNs),因为它在类似的视觉问题上具有令人信服的性能,而且在测试时执行速度也很快。鉴于再识别解决方案的重要性和广泛的应用范围,我们的目标是讨论在该领域开展的工作,并提出一项最先进的DNN模型用于这项任务的调查。我们提供了每个模型的描述以及它们在一组基准数据集上的评估。最后,我们对这些模型进行了详细的比较,并讨论了它们的局限性,为今后的研究提供了指导。

成为VIP会员查看完整内容
0
31

【导读】元学习旨在学会学习,是当下研究热点之一。最近来自爱丁堡大学的学者发布了关于元学习最新综述论文《Meta-Learning in Neural Networks: A Survey》,值得关注,详述了元学习体系,包括定义、方法、应用、挑战,成为不可缺少的文献。

近年来,元学习领域,或者说“学会学习的学习”,引起了人们极大的兴趣。与传统的人工智能方法(使用固定的学习算法从头开始解决给定的任务)不同,元学习的目的是改进学习算法本身,考虑到多次学习的经验。这个范例提供了一个机会来解决深度学习的许多传统挑战,包括数据和计算瓶颈,以及泛化的基本问题。在这项综述中,我们描述了当代元学习的景观。我们首先讨论元学习的定义,并将其定位于相关领域,如迁移学习、多任务学习和超参数优化。然后,我们提出了一个新的分类法,对元学习方法的空间进行了更全面的细分。我们综述了元学习的一些有前途的应用和成功案例,包括小样本学习、强化学习和体系架构搜索。最后,我们讨论了突出的挑战和未来研究的有希望的领域。

https://arxiv.org/abs/2004.05439

概述

现代机器学习模型通常是使用手工设计的固定学习算法,针对特定任务从零开始进行训练。基于深度学习的方法在许多领域都取得了巨大的成功[1,2,3]。但是有明显的局限性[4]。例如,成功主要是在可以收集或模拟大量数据的领域,以及在可以使用大量计算资源的领域。这排除了许多数据本质上是稀有或昂贵的[5],或者计算资源不可用的应用程序[6,7]。

元学习提供了另一种范式,机器学习模型可以在多个学习阶段获得经验——通常覆盖相关任务的分布——并使用这些经验来改进未来的学习性能。这种“学会学习”[8]可以带来各种好处,如数据和计算效率,它更适合人类和动物的学习[9],其中学习策略在一生和进化时间尺度上都得到改善[10,9,11]。机器学习在历史上是建立在手工设计的特征上的模型,而特征的选择往往是最终模型性能的决定因素[12,13,14]。深度学习实现了联合特征和模型学习的承诺[15,16],为许多任务提供了巨大的性能改进[1,3]。神经网络中的元学习可以看作是集成联合特征、模型和算法学习的下一步。神经网络元学习有着悠久的历史[17,18,8]。然而,它作为推动当代深度学习行业前沿的潜力,导致了最近研究的爆炸性增长。特别是,元学习有可能缓解当代深度学习[4]的许多主要批评,例如,通过提供更好的数据效率,利用先验知识转移,以及支持无监督和自主学习。成功的应用领域包括:小样本图像识别[19,20]、无监督学习[21]、数据高效[22,23]、自导向[24]强化学习(RL)、超参数优化[25]和神经结构搜索(NAS)[26, 27, 28]。

在文献中可以找到许多关于元学习的不同观点。特别是由于不同的社区对这个术语的使用略有不同,所以很难定义它。与我们[29]相关的观点认为,元学习是管理“没有免费午餐”定理[30]的工具,并通过搜索最适合给定问题或问题族的算法(归纳偏差)来改进泛化。然而,从广义上来说,这个定义可以包括迁移、多任务、特征选择和模型集成学习,这些在今天通常不被认为是元学习。另一个关于元学习[31]的观点广泛地涵盖了基于数据集特性的算法选择和配置技术,并且很难与自动机器学习(AutoML)[32]区分开来。在这篇论文中,我们关注当代的神经网络元学习。我们将其理解为算法或归纳偏差搜索,但重点是通过端到端学习明确定义的目标函数(如交叉熵损失、准确性或速度)来实现的。

因此,本文提供了一个独特的,及时的,最新的调查神经网络元学习领域的快速增长。相比之下,在这个快速发展的领域,以往的研究已经相当过时,或者关注于数据挖掘[29、33、34、35、36、37、31]、自动[32]的算法选择,或者元学习的特定应用,如小样本学习[38]或神经架构搜索[39]。

我们讨论元学习方法和应用。特别是,我们首先提供了一个高层次的问题形式化,它可以用来理解和定位最近的工作。然后,我们在元表示、元目标和元优化器方面提供了一种新的方法分类。我们调查了几个流行和新兴的应用领域,包括少镜头、强化学习和架构搜索;并对相关的话题如迁移学习、多任务学习和自动学习进行元学习定位。最后,我们讨论了尚未解决的挑战和未来研究的领域。

未来挑战:

-元泛化 元学习在不同任务之间面临着泛化的挑战,这与传统机器学习中在不同实例之间进行泛化的挑战类似。

  • 任务分布的多模态特性
  • 任务族
  • 计算代价
  • 跨模态迁移和异构任务

总结

元学习领域最近出现了快速增长的兴趣。这带来了一定程度的混乱,比如它如何与邻近的字段相关联,它可以应用到什么地方,以及如何对它进行基准测试。在这次综述中,我们试图通过从方法学的角度对这一领域进行彻底的调查来澄清这些问题——我们将其分为元表示、元优化器和元目标的分类;从应用的角度来看。我们希望这项调查将有助于新人和实践者在这个不断增长的领域中定位自己,并强调未来研究的机会。

成为VIP会员查看完整内容
0
103

题目: Meta-Learning in Neural Networks: A Survey

简介: 近年来,元学习领域的兴趣急剧上升。与使用固定学习算法从头解决给定任务的传统AI方法相反,元学习旨在根据多次学习事件的经验来改善学习算法本身。这种范例为解决深度学习的许多传统挑战提供了机会,包括数据和计算瓶颈以及泛化的基本问题。在本次调查中,我们描述了当代的元学习环境。我们首先讨论元学习的定义,并将其相对于相关领域(例如转移学习,多任务学习和超参数优化)进行定位。然后,我们提出了一种新的分类法,该分类法为当今的元学习方法提供了更为全面的细分。我们调查了元学习的有希望的应用程序和成功案例,包括,强化学习和架构搜索。最后,我们讨论了未来研究的突出挑战和有希望的领域。

成为VIP会员查看完整内容
0
44

自然语言处理(NLP)帮助智能机器更好地理解人类语言,实现基于语言的人机交流。计算能力的最新发展和大量语言数据的出现,增加了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域的应用取得了显著的进步,数据驱动策略的应用已经非常普遍。本调查对得益于深度学习的NLP的不同方面和应用进行了分类和讨论。它涵盖了核心的NLP任务和应用,并描述了深度学习方法和模型如何推进这些领域。我们进一步分析和比较不同的方法和最先进的模型。

成为VIP会员查看完整内容
0
93

论文主题: Recent Advances in Deep Learning for Object Detection

论文摘要: 目标检测是计算机视觉中的基本视觉识别问题,并且在过去的几十年中已得到广泛研究。目标检测指的是在给定图像中找到具有精确定位的特定目标,并为每个目标分配一个对应的类标签。由于基于深度学习的图像分类取得了巨大的成功,因此近年来已经积极研究了使用深度学习的对象检测技术。在本文中,我们对深度学习中视觉对象检测的最新进展进行了全面的调查。通过复习文献中最近的大量相关工作,我们系统地分析了现有的目标检测框架并将调查分为三个主要部分:(i)检测组件,(ii)学习策略(iii)应用程序和基准。在调查中,我们详细介绍了影响检测性能的各种因素,例如检测器体系结构,功能学习,建议生成,采样策略等。最后,我们讨论了一些未来的方向,以促进和刺激未来的视觉对象检测研究。与深度学习。

成为VIP会员查看完整内容
0
44

题目: A Survey and Critique of Multiagent Deep Reinforcement Learning

简介: 近年来,深度强化学习(RL)取得了出色的成绩。这使得应用程序和方法的数量急剧增加。最近的工作探索了单智能体深度强化之外的学习,并考虑了多智能体深度强化学习的场景。初步结果显示在复杂的多智能体领域中的成功,尽管有许多挑战需要解决。本文的主要目的是提供有关当前多智能体深度强化学习(MDRL)文献的概述。此外,我们通过更广泛的分析对概述进行补充:(i)我们回顾了以前RL中介绍的基础内容,并强调了它们如何适应多智能深度强化学习设置。 (ii)我们为该领域的新开业者提供一般指导:描述从MDRL工作中汲取的经验教训,指出最新的基准并概述研究途径。 (iii)我们提出了MDRL的实际挑战(例如,实施和计算需求)。

作者介绍: Pablo Hernandez-Leal,Borealis AI的研究员,在此之前,曾与Michael Kaisers一起参与过阿姆斯特丹CWI的智能和自治系统。研究方向:单智能体环境开发的算法以及多智能体。计划开发一种算法,该算法使用博弈论,贝叶斯推理和强化学习中的模型和概念在战略交互中得到使用。

成为VIP会员查看完整内容
0
35
小贴士
相关资讯
图数据表示学习综述论文
专知
24+阅读 · 2019年6月10日
元学习(Meta-Learning) 综述及五篇顶会论文推荐
Meta-Learning 元学习:学会快速学习
GAN生成式对抗网络
13+阅读 · 2018年12月8日
学习如何学习的算法:简述元学习研究方向现状
深度学习世界
3+阅读 · 2018年4月9日
2017深度学习NLP进展与趋势
云栖社区
7+阅读 · 2017年12月17日
相关论文
Jiang Lu,Pinghua Gong,Jieping Ye,Changshui Zhang
65+阅读 · 9月6日
Learning from Few Samples: A Survey
Nihar Bendre,Hugo Terashima Marín,Peyman Najafirad
39+阅读 · 7月30日
Image Segmentation Using Deep Learning: A Survey
Shervin Minaee,Yuri Boykov,Fatih Porikli,Antonio Plaza,Nasser Kehtarnavaz,Demetri Terzopoulos
20+阅读 · 1月15日
A Comprehensive Survey on Transfer Learning
Fuzhen Zhuang,Zhiyuan Qi,Keyu Duan,Dongbo Xi,Yongchun Zhu,Hengshu Zhu,Hui Xiong,Qing He
67+阅读 · 2019年11月7日
Few-shot Learning: A Survey
Yaqing Wang,Quanming Yao
240+阅读 · 2019年4月10日
Joaquin Vanschoren
94+阅读 · 2018年10月8日
A Survey on Deep Transfer Learning
Chuanqi Tan,Fuchun Sun,Tao Kong,Wenchang Zhang,Chao Yang,Chunfang Liu
7+阅读 · 2018年8月6日
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu,Dushyant Rao,Jakub Sygnowski,Oriol Vinyals,Razvan Pascanu,Simon Osindero,Raia Hadsell
6+阅读 · 2018年7月16日
Chengxiang Yin,Jian Tang,Zhiyuan Xu,Yanzhi Wang
4+阅读 · 2018年6月8日
Anastasia Pentina,Christoph H. Lampert
3+阅读 · 2017年6月8日
Top