Metaheuristic algorithms for cardinality-constrained portfolio optimization require repair operators to map infeasible candidates onto the feasible region. Standard Euclidean projection treats assets as independent and can ignore the covariance structure that governs portfolio risk, potentially producing less diversified portfolios. This paper introduces Covariance-Aware Simplex Projection (CASP), a two-stage repair operator that (i) selects a target number of assets using volatility-normalized scores and (ii) projects the candidate weights using a covariance-aware geometry aligned with tracking-error risk. This provides a portfolio-theoretic foundation for using a covariance-induced distance in repair operators. On S&P 500 data (2020-2024), CASP-Basic delivers materially lower portfolio variance than standard Euclidean repair without relying on return estimates, with improvements that are robust across assets and statistically significant. Ablation results indicate that volatility-normalized selection drives most of the variance reduction, while the covariance-aware projection provides an additional, consistent improvement. We further show that optional return-aware extensions can improve Sharpe ratios, and out-of-sample tests confirm that gains transfer to realized performance. CASP integrates as a drop-in replacement for Euclidean projection in metaheuristic portfolio optimizers.


翻译:针对基数约束投资组合优化的元启发式算法需要修复算子将不可行解映射至可行域。传统的欧几里得投影将资产视为独立变量,可能忽略决定投资组合风险的协方差结构,从而导致分散化程度较低的投资组合。本文提出协方差感知单纯形投影(CASP),该两阶段修复算子具有以下特征:(i)通过波动率归一化评分选择目标数量的资产;(ii)采用与跟踪误差风险相一致的协方差感知几何结构对候选权重进行投影。这为在修复算子中使用协方差诱导距离提供了投资组合理论依据。基于标普500数据(2020-2024年)的实证表明,在不依赖收益预测的情况下,基础版CASP较传统欧几里得修复方法能显著降低投资组合方差,其改进效果在不同资产间具有稳健性且具备统计显著性。消融实验表明波动率归一化选择贡献了大部分方差缩减,而协方差感知投影则提供了额外且持续的改进。我们进一步证明可选的风险收益扩展可提升夏普比率,样本外测试也证实该优势能够转化为实际绩效。CASP可作为即插即用模块替代元启发式投资组合优化器中的欧几里得投影。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
专知会员服务
20+阅读 · 2020年12月9日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员