A $k$-vertex connectivity oracle for undirected $G$ is a data structure that, given $u,v\in V(G)$, reports $\min\{k,κ(u,v)\}$, where $κ(u,v)$ is the pairwise vertex connectivity between $u,v$. There are three main measures of efficiency: construction time, query time, and space. Prior work of Izsak and Nutov shows that a data structure of total size $\tilde{O}(kn)$ can even be encoded as a $\tilde{O}(k)$-bit labeling scheme so that vertex-connectivity queries can be answered in $\tilde{O}(k)$ time. The construction time is polynomial, but unspecified. In this paper we address the top three complexity measures: Space, Query Time, and Construction Time. We give an $Ω(kn)$-bit lower bound on any vertex connectivity oracle. We construct an optimal-space connectivity oracle in max-flow time that answers queries in $O(\log n)$ time, independent of $k$.
翻译:对于无向图$G$的$k$-顶点连通性预言机是一种数据结构,当给定$u,v\in V(G)$时,报告$\min\{k,κ(u,v)\}$,其中$κ(u,v)$表示$u,v$之间的成对顶点连通度。其效率主要从三个维度衡量:构建时间、查询时间和空间复杂度。Izsak与Nutov的先前研究表明,总大小为$\tilde{O}(kn)$的数据结构甚至可以编码为$\tilde{O}(k)$比特的标记方案,使得顶点连通性查询能在$\tilde{O}(k)$时间内完成。其构建时间为多项式量级但未具体说明。本文针对三个核心复杂度指标——空间开销、查询时间与构建时间——展开研究。我们证明了任意顶点连通性预言机存在$\Omega(kn)$比特的下界,并构建了一个在最大流时间内构建、查询时间为$O(\log n)$(与$k$无关)的最优空间连通性预言机。