Interface problems depict many fundamental physical phenomena and widely apply in the engineering. However, it is challenging to develop efficient fully decoupled numerical methods for solving degenerate interface problems in which the coefficient of a PDE is discontinuous and greater than or equal to zero on the interface. The main motivation in this paper is to construct fully decoupled numerical methods for solving nonlinear degenerate interface problems with ``double singularities". An efficient fully decoupled numerical method is proposed for nonlinear degenerate interface problems. The scheme combines deep neural network on the singular subdomain with finite difference method on the regular subdomain. The key of the new approach is to split nonlinear degenerate partial differential equation with interface into two independent boundary value problems based on deep learning. The outstanding advantages of the proposed schemes are that not only the convergence order of the degenerate interface problems on whole domain is determined by the finite difference scheme on the regular subdomain, but also can calculate $\mathbf{VERY}$ $\mathbf{BIG}$ jump ratio(such as $10^{12}:1$ or $1:10^{12}$) for the interface problems including degenerate and non-degenerate cases. The expansion of the solutions does not contains any undetermined parameters in the numerical method. In this way, two independent nonlinear systems are constructed in other subdomains and can be computed in parallel. The flexibility, accuracy and efficiency of the methods are validated from various experiments in both 1D and 2D. Specially, not only our method is suitable for solving degenerate interface case, but also for non-degenerate interface case. Some application examples with complicated multi-connected and sharp edge interface examples including degenerate and nondegenerate cases are also presented.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2023年7月20日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员