CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html

热门内容

The quest of `can machines think' and `can machines do what human do' are quests that drive the development of artificial intelligence. Although recent artificial intelligence succeeds in many data intensive applications, it still lacks the ability of learning from limited exemplars and fast generalizing to new tasks. To tackle this problem, one has to turn to machine learning, which supports the scientific study of artificial intelligence. Particularly, a machine learning problem called Few-Shot Learning (FSL) targets at this case. It can rapidly generalize to new tasks of limited supervised experience by turning to prior knowledge, which mimics human's ability to acquire knowledge from few examples through generalization and analogy. It has been seen as a test-bed for real artificial intelligence, a way to reduce laborious data gathering and computationally costly training, and antidote for rare cases learning. With extensive works on FSL emerging, we give a comprehensive survey for it. We first give the formal definition for FSL. Then we point out the core issues of FSL, which turns the problem from "how to solve FSL" to "how to deal with the core issues". Accordingly, existing works from the birth of FSL to the most recent published ones are categorized in a unified taxonomy, with thorough discussion of the pros and cons for different categories. Finally, we envision possible future directions for FSL in terms of problem setup, techniques, applications and theory, hoping to provide insights to both beginners and experienced researchers.

0
302
下载
预览

最新内容

As the deep learning makes big progresses in still-image face recognition, unconstrained video face recognition is still a challenging task due to low quality face images caused by pose, blur, occlusion, illumination etc. In this paper we propose a network for face recognition which gives an explicit and quantitative quality score at the same time when a feature vector is extracted. To our knowledge this is the first network that implements these two functions in one network online. This network is very simple by adding a quality network branch to the baseline network of face recognition. It does not require training datasets with annotated face quality labels. We evaluate this network on both still-image face datasets and video face datasets and achieve the state-of-the-art performance in many cases. This network enables a lot of applications where an explicit face quality scpre is used. We demonstrate three applications of the explicit face quality, one of which is a progressive feature aggregation scheme in online video face recognition. We design an experiment to prove the benefits of using the face quality in this application. Code will be available at \url{https://github.com/deepcam-cn/facequality}.

0
0
下载
预览

最新论文

As the deep learning makes big progresses in still-image face recognition, unconstrained video face recognition is still a challenging task due to low quality face images caused by pose, blur, occlusion, illumination etc. In this paper we propose a network for face recognition which gives an explicit and quantitative quality score at the same time when a feature vector is extracted. To our knowledge this is the first network that implements these two functions in one network online. This network is very simple by adding a quality network branch to the baseline network of face recognition. It does not require training datasets with annotated face quality labels. We evaluate this network on both still-image face datasets and video face datasets and achieve the state-of-the-art performance in many cases. This network enables a lot of applications where an explicit face quality scpre is used. We demonstrate three applications of the explicit face quality, one of which is a progressive feature aggregation scheme in online video face recognition. We design an experiment to prove the benefits of using the face quality in this application. Code will be available at \url{https://github.com/deepcam-cn/facequality}.

0
0
下载
预览
Top