We study the concepts of the $\ell_p$-Vietoris-Rips simplicial set and the $\ell_p$-Vietoris-Rips complex of a metric space, where $1\leq p \leq \infty.$ This theory unifies two established theories: for $p=\infty,$ this is the classical theory of Vietoris-Rips complexes, and for $p=1,$ this corresponds to the blurred magnitude homology theory. We prove several results that are known for the Vietoris-Rips complex in the general case: (1) we prove a stability theorem for the corresponding version of the persistent homology; (2) we show that, for a compact Riemannian manifold and a sufficiently small scale parameter, all the "$\ell_p$-Vietoris-Rips spaces" are homotopy equivalent to the manifold; (3) we demonstrate that the $\ell_p$-Vietoris-Rips spaces are invariant (up to homotopy) under taking the metric completion. Additionally, we show that the limit of the homology groups of the $\ell_p$-Vietoris-Rips spaces, as the scale parameter tends to zero, does not depend on $p$; and that the homology groups of the $\ell_p$-Vietoris-Rips spaces commute with filtered colimits of metric spaces.


翻译:暂无翻译

0
下载
关闭预览

相关内容

WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
27+阅读 · 2024年3月25日
专知会员服务
33+阅读 · 2021年3月7日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月17日
Arxiv
1+阅读 · 2024年12月15日
Arxiv
1+阅读 · 2024年12月13日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员