Optimal algorithm design for federated learning (FL) remains an open problem. This paper explores the full potential of FL in practical edge computing systems where workers may have different computation and communication capabilities, and quantized intermediate model updates are sent between the server and workers. First, we present a general quantized parallel mini-batch stochastic gradient descent (SGD) algorithm for FL, namely GenQSGD, which is parameterized by the number of global iterations, the numbers of local iterations at all workers, and the mini-batch size. We also analyze its convergence error for any choice of the algorithm parameters. Then, we optimize the algorithm parameters to minimize the energy cost under the time constraint and convergence error constraint. The optimization problem is a challenging non-convex problem with non-differentiable constraint functions. We propose an iterative algorithm to obtain a KKT point using advanced optimization techniques. Numerical results demonstrate the significant gains of GenQSGD over existing FL algorithms and reveal the importance of optimally designing FL algorithms.


翻译:用于联合学习( FL) 的优化算法设计仍是一个尚未解决的问题 。 本文探索了 FL 在实际边缘计算系统中的全部潜力, 在这些系统中,工人可能有不同的计算和通信能力, 并在服务器和工人之间发送了量化的中间模型更新 。 首先, 我们为 FL 提出了一个通用的平行的平行微型批次梯度梯度下降算法(SGD), 即 GenQSGD 算法, 以全球迭代数、 所有工人的本地迭代数和微型批次大小为参数的参数参数参数参数参数。 我们还分析了其组合错误, 以选择算法参数。 然后, 我们优化了算法参数, 在时间限制和趋同错误限制下将能源成本降到最低 。 优化问题是一个挑战性的非convex 问题, 具有无法区分的制约功能 。 我们提议一个迭代算法, 以先进的优化技术获得 KKT点 。 数字结果显示 GenQSGD 对现有 FL 算法的重大收益, 并显示最佳设计 FL 算法的重要性 。

1
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
7+阅读 · 2021年4月30日
Federated Learning with Personalization Layers
Arxiv
4+阅读 · 2019年12月2日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员