联邦学习(FL)是一种机器学习设置,许多客户(例如移动设备或整个组织)在保持数据分散的同时协同训练一个模型。FL体现了集中的数据收集和最小化的原则,并可以减轻许多系统的隐私风险和成本造成的传统,集中的机器学习和数据科学方法。这个演讲,Aurelien Bellet将介绍属于FL范畴的各种设置,回顾一些标准算法,并讨论最近的一些工作和开放问题。

http://researchers.lille.inria.fr/abellet/talks/federated_learning_introduction.pdf

成为VIP会员查看完整内容
92

相关内容

模型攻击:鲁棒性联邦学习研究的最新进展
机器之心
35+阅读 · 2020年6月3日
联邦学习最新研究趋势!
AI科技评论
52+阅读 · 2020年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Arxiv
4+阅读 · 2021年1月14日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
相关主题
相关论文
Arxiv
4+阅读 · 2021年1月14日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
微信扫码咨询专知VIP会员