We give a formalization of Pratt's intuitive sculpting process for higher-dimensional automata (HDA). Intuitively, an HDA is a sculpture if it can be embedded in (i.e. sculpted from) a single higher dimensional cell (hypercube). A first important result of this paper is that not all HDA can be sculpted, exemplified through several natural acyclic HDA, one being the famous "broken box" example of van Glabbeek. Moreover, we show that even the natural operation of unfolding is completely unrelated to sculpting, e.g., there are sculptures whose unfoldings cannot be sculpted. We investigate the expressiveness of sculptures, as a proper subclass of HDA, by showing them to be equivalent to regular ST-structures (an event-based counterpart of HDA) and to (regular) Chu spaces over 3 (in their concurrent interpretation given by Pratt). We believe that our results shed new light on the intuitions behind sculpting as a method of modeling concurrent behavior, showing the precise reaches of its expressiveness. Besides expressiveness, we also develop an algorithm to decide whether an HDA can be sculpted. More importantly, we show that sculptures are equivalent to Euclidian cubical complexes (being the geometrical counterpart of our combinatorial definition). This exposes a close connection between geometric and combinatorial models for concurrency which may be of use for both areas.


翻译:我们将普拉特直觉雕刻过程正规化为高维自动成像(HDA) 。 直观地说, HDA 是一个雕塑, 如果它可以嵌入( 雕刻自) 一个单一高维细胞( 高光立方体) 。 本文的第一个重要结果是, 并非所有HDA都能雕刻, 具体表现在几个自然周期的 HDA 中, 其中之一是Van Glabbeek 的著名的“ 碎箱” 例子。 此外, 我们显示, 即使是演化的自然操作也与雕塑完全无关, 例如, 有雕塑无法雕塑的雕塑是雕塑的雕塑。 我们调查雕塑的外观性, 显示这些雕塑的直观性相当于常规结构( 基于事件的对立方对立方体), 以及( 由Pratt提供的常规) Chu空间超过3 。 我们相信, 我们的结果在雕塑后直径直径的雕刻上展示了新的光线, 成为了一种近雕塑的直径的直径直径直径连接连接连接, 显示我们是否具有直立的直立的直径的直方的直径, 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
0+阅读 · 2021年3月12日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
相关论文
Top
微信扫码咨询专知VIP会员