Building deployment-ready LLM agents requires complex orchestration of tools, data sources, and control flow logic, yet existing systems tightly couple agent logic to specific programming languages and deployment models. We present a declarative system that separates agent workflow specification from implementation, enabling the same pipeline definition to execute across multiple backend languages (Java, Python, Go) and deployment environments (cloud-native, on-premises). Our key insight is that most agent workflows consist of common patterns -- data serialization, filtering, RAG retrieval, API orchestration -- that can be expressed through a unified DSL rather than imperative code. This approach transforms agent development from application programming to configuration, where adding new tools or fine-tuning agent behaviors requires only pipeline specification changes, not code deployment. Our system natively supports A/B testing of agent strategies, allowing multiple pipeline variants to run on the same backend infrastructure with automatic metric collection and comparison. We evaluate our approach on real-world e-commerce workflows at PayPal, processing millions of daily interactions. Our results demonstrate 60% reduction in development time, and 3x improvement in deployment velocity compared to imperative implementations. The language's declarative approach enables non-engineers to modify agent behaviors safely, while maintaining sub-100ms orchestration overhead. We show that complex workflows involving product search, personalization, and cart management can be expressed in under 50 lines of DSL compared to 500+ lines of imperative code.


翻译:构建可部署的LLM智能体需要对工具、数据源和控制流逻辑进行复杂编排,然而现有系统将智能体逻辑与特定编程语言和部署模型紧密耦合。我们提出了一种声明式系统,将智能体工作流规范与实现分离,使得同一流水线定义能够在多种后端语言(Java、Python、Go)和部署环境(云原生、本地部署)中执行。我们的核心见解是:大多数智能体工作流由通用模式构成——数据序列化、过滤、RAG检索、API编排——这些模式可以通过统一的领域特定语言(DSL)而非命令式代码来表达。该方法将智能体开发从应用程序编程转变为配置工作,添加新工具或微调智能体行为仅需修改流水线规范,而无需代码部署。我们的系统原生支持智能体策略的A/B测试,允许多个流水线变体在相同后端基础设施上运行,并自动收集和比较性能指标。我们在PayPal的真实电商工作流中评估了该方法,每日处理数百万次交互。结果显示,与命令式实现相比,开发时间减少60%,部署速度提升3倍。该语言的声明式方法使非工程师能够安全地修改智能体行为,同时保持低于100毫秒的编排开销。我们证明,涉及产品搜索、个性化和购物车管理的复杂工作流仅需不到50行DSL代码即可表达,而对应的命令式代码则超过500行。

0
下载
关闭预览

相关内容

图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员