Sketch-based 3D reconstruction remains a challenging task due to the abstract and sparse nature of sketch inputs, which often lack sufficient semantic and geometric information. To address this, we propose Sketch2Symm, a two-stage generation method that produces geometrically consistent 3D shapes from sketches. Our approach introduces semantic bridging via sketch-to-image translation to enrich sparse sketch representations, and incorporates symmetry constraints as geometric priors to leverage the structural regularity commonly found in everyday objects. Experiments on mainstream sketch datasets demonstrate that our method achieves superior performance compared to existing sketch-based reconstruction methods in terms of Chamfer Distance, Earth Mover's Distance, and F-Score, verifying the effectiveness of the proposed semantic bridging and symmetry-aware design.
翻译:暂无翻译