Research in explorable uncertainty addresses combinatorial optimization problems where there is partial information about the values of numeric input parameters, and exact values of these parameters can be determined by performing costly queries. The goal is to design an adaptive query strategy that minimizes the query cost incurred in computing an optimal solution. Solving such problems generally requires that we be able to solve the associated verification problem: given the answers to all queries in advance, find a minimum-cost set of queries that certifies an optimal solution to the combinatorial optimization problem. We present a polynomial-time algorithm for verifying a minimum-weight basis of a matroid, where each weight lies in a given uncertainty area. These areas may be finite sets, real intervals, or unions of open and closed intervals, strictly generalizing previous work by Erlebach and Hoffman which only handled the special case of open intervals. Our algorithm introduces new techniques to address the resulting challenges. Verification problems are of particular importance in the area of explorable uncertainty, as the structural insights and techniques used to solve the verification problem often heavily influence work on the corresponding online problem and its stochastic variant. In our case, we use structural results from the verification problem to give a best-possible algorithm for a promise variant of the corresponding adaptive online problem. Finally, we show that our algorithms can be applied to two learning-augmented variants of the minimum-weight basis problem under explorable uncertainty.
翻译:可探索不确定性领域的研究关注组合优化问题,其中数值输入参数的值仅有部分信息已知,且这些参数的确切值可通过执行代价高昂的查询来确定。目标是设计一种自适应查询策略,以最小化计算最优解过程中产生的查询代价。解决此类问题通常要求我们能够解决相关的验证问题:给定所有查询的答案,找到一个最小代价的查询集合,以证明该组合优化问题的最优解。我们提出了一种多项式时间算法,用于验证拟阵的最小权基,其中每个权重位于给定的不确定区域内。这些区域可以是有限集、实区间或开闭区间的并集,严格推广了Erlebach和Hoffman先前仅处理开区间特例的工作。我们的算法引入了新技术以应对由此产生的挑战。验证问题在可探索不确定性领域尤为重要,因为解决验证问题所使用的结构洞见和技术通常深刻影响着相应在线问题及其随机变体的研究工作。在我们的案例中,我们利用验证问题的结构结果,为相应自适应在线问题的一个承诺变体给出了一个最优算法。最后,我们展示了我们的算法可应用于可探索不确定性下最小权基问题的两个学习增强变体。