Let $G = (V, E)$ be a connected graph, and let $T$ in $V$ be a subset of vertices. An orientation of $G$ is called $T$-odd if any vertex $v \in V$ has odd in-degree if and only if it is in $T$. Finding a T -odd orientation of G can be solved in polynomial time as shown by Chevalier, Jaeger, Payan and Xuong (1983). Since then, $T$-odd orientations have continued to attract interest, particularly in the context of global constraints on the orientation. For instance, Frank and Király (2002) investigated $k$-connected $T$-odd orientations and raised questions about acyclic $T$-odd orientations. This problem is now recognized as an Egres problem and is known as the "Acyclic orientation with parity constraints" problem. Szegedy ( 005) proposed a randomized polynomial algorithm to address this problem. An easy consequence of his work provides a polynomial time algorithm for planar graphs whenever $|T | = |V | - 1$. Nevertheless, it remains unknown whether it exists in general. In this paper we contribute to the understanding of the complexity of this problem by studying a more general one. We prove that finding a $T$-odd acyclic orientation on graphs having some directed edges is NP-complete.
翻译:令 $G = (V, E)$ 为一个连通图,$T$ 为 $V$ 的一个顶点子集。若图 $G$ 的一个定向满足:顶点 $v \\in V$ 的入度为奇数当且仅当 $v \\in T$,则称该定向为 $T$-奇定向。Chevalier、Jaeger、Payan 和 Xuong(1983)已证明寻找 $G$ 的 $T$-奇定向可在多项式时间内求解。此后,$T$-奇定向持续受到关注,尤其是在全局定向约束的背景下。例如,Frank 和 Király(2002)研究了 $k$-连通 $T$-奇定向,并对无环 $T$-奇定向提出了疑问。该问题现被列为 Egres 问题,称为“带奇偶约束的无环定向”问题。Szegedy(2005)提出了一种随机多项式算法以解决此问题。其工作的一个直接推论为:当 $|T| = |V| - 1$ 时,平面图存在多项式时间算法。然而,该问题在一般情况下是否可解仍属未知。本文通过研究一个更一般的问题,深化了对该问题复杂性的理解。我们证明了在已包含部分有向边的图中寻找 $T$-奇无环定向是 NP 完全的。