Let $C_{s,t}$ be the complete bipartite geometric graph, with $s$ and $t$ vertices on two distinct parallel lines respectively, and all $s t$ straight-line edges drawn between them. In this paper, we show that every complete bipartite simple topological graph, with parts of size $2(k-1)^4 + 1$ and $2^{k^{5k}}$, contains a topological subgraph weakly isomorphic to $C_{k,k}$. As a corollary, every $n$-vertex simple topological graph not containing a plane path of length $k$ has at most $O_k(n^{2 - 8/k^4})$ edges. When $k = 3$, we obtain a stronger bound by showing that every $n$-vertex simple topological graph not containing a plane path of length 3 has at most $O(n^{4/3})$ edges. We also prove that $x$-monotone simple topological graphs not containing a plane path of length 3 have at most a linear number of edges.
翻译:令 $C_{s,t}$ 表示完全二部几何图,其中 $s$ 和 $t$ 个顶点分别位于两条不同的平行线上,且所有 $s t$ 条直线边均绘制于这些顶点之间。本文证明,每个完全二部简单拓扑图,若其两部分的大小分别为 $2(k-1)^4 + 1$ 和 $2^{k^{5k}}$,则包含一个弱同构于 $C_{k,k}$ 的拓扑子图。作为推论,任何不包含长度为 $k$ 的平面路径的 $n$ 顶点简单拓扑图,其边数最多为 $O_k(n^{2 - 8/k^4})$。当 $k = 3$ 时,我们得到了更强的界:任何不包含长度为 3 的平面路径的 $n$ 顶点简单拓扑图,其边数最多为 $O(n^{4/3})$。我们还证明,不包含长度为 3 的平面路径的 $x$ 单调简单拓扑图,其边数最多为线性数量级。