We study the problem of certifying local Hamiltonians from real-time access to their dynamics. Given oracle access to $e^{-itH}$ for an unknown $k$-local Hamiltonian $H$ and a fully specified target Hamiltonian $H_0$, the goal is to decide whether $H$ is exactly equal to $H_0$ or differs from $H_0$ by at least $\varepsilon$ in normalized Frobenius norm, while minimizing the total evolution time. We introduce the first intolerant Hamiltonian certification protocol that achieves optimal performance for all constant-locality Hamiltonians. For general $n$-qubit, $k$-local, traceless Hamiltonians, our procedure uses $O(c^k/\varepsilon)$ total evolution time for a universal constant $c$, and succeeds with high probability. In particular, for $O(1)$-local Hamiltonians, the total evolution time becomes $Θ(1/\varepsilon)$, matching the known $Ω(1/\varepsilon)$ lower bounds and achieving the gold-standard Heisenberg-limit scaling. Prior certification methods either relied on implementing inverse evolution of $H$, required controlled access to $e^{-itH}$, or achieved near-optimal guarantees only in restricted settings such as the Ising case ($k=2$). In contrast, our algorithm requires neither inverse evolution nor controlled operations: it uses only forward real-time dynamics and achieves optimal intolerant certification for all constant-locality Hamiltonians.


翻译:我们研究了基于对其动力学实时访问的局域哈密顿量认证问题。给定对未知k-局域哈密顿量H的酉演化算子$e^{-itH}$的预言机访问,以及完全确定的目标哈密顿量$H_0$,目标是在最小化总演化时间的前提下,判定H是否精确等于$H_0$,或在归一化Frobenius范数下与$H_0$至少相差$\varepsilon$。我们提出了首个针对所有常数局域哈密顿量达到最优性能的严格容错哈密顿量认证协议。对于一般的n-量子比特、k-局域、无迹哈密顿量,我们的算法使用$O(c^k/\varepsilon)$的总演化时间(其中c为普适常数),并以高概率成功。特别地,对于$O(1)$-局域哈密顿量,总演化时间达到$Θ(1/\varepsilon)$,与已知的$Ω(1/\varepsilon)$下界匹配,实现了黄金标准的海森堡极限标度。先前的认证方法要么依赖于实现H的逆演化,要么需要$e^{-itH}$的受控访问,或仅在受限场景(如伊辛模型$k=2$)中达到近最优保证。相比之下,我们的算法既不需要逆演化也不需要受控操作:仅利用前向实时动力学,即可对所有常数局域哈密顿量实现最优的严格容错认证。

0
下载
关闭预览

相关内容

【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员