Graph neural networks have recently become a standard method for analysing chemical compounds. In the field of molecular property prediction, the emphasis is now put on designing new model architectures, and the importance of atom featurisation is oftentimes belittled. When contrasting two graph neural networks, the use of different atom features possibly leads to the incorrect attribution of the results to the network architecture. To provide a better understanding of this issue, we compare multiple atom representations for graph models and evaluate them on the prediction of free energy, solubility, and metabolic stability. To the best of our knowledge, this is the first methodological study that focuses on the relevance of atom representation to the predictive performance of graph neural networks.


翻译:在分子属性预测领域,目前的重点是设计新的模型结构,而原子发酵的重要性往往被贬低。在对比两个图形神经网络时,不同原子特征的使用可能导致将结果错误地归属于网络结构。为了更好地了解这一问题,我们比较了图形模型的多个原子表示,并评价了自由能源、溶解性和代谢稳定性的预测。据我们所知,这是第一个侧重于原子表示与图形神经网络预测性能的相关性的方法研究。

0
下载
关闭预览

相关内容

GitHub 发布的文本编辑器。
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
35+阅读 · 2020年4月15日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员