For the binary prevalence quantification problem under prior probability shift, we determine the asymptotic variance of the maximum likelihood estimator. We find that it is a function of the Brier score for the regression of the class label against the features under the test data set distribution. This observation suggests that optimising the accuracy of a base classifier on the training data set helps to reduce the variance of the related quantifier on the test data set. Therefore, we also point out training criteria for the base classifier that imply optimisation of both of the Brier scores on the training and the test data sets.


翻译:对于在先前概率变化情况下的二元流行程度量化问题,我们确定最大概率估计值的无症状差异。我们发现,这是Brier分数相对于测试数据集分布下分类标签特征回归的函数。这一观察表明,在培训数据集上优化基准分类员的准确性有助于减少测试数据集中相关限定值的差异。因此,我们还指出了基准分类师的培训标准,这意味着在培训和测试数据集中优化Brier分数。

0
下载
关闭预览

相关内容

先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
63+阅读 · 2020年3月4日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员