Forecasting conflict-related fatalities remains a central challenge in political science and policy analysis due to the sparse, bursty, and highly non-stationary nature of violence data. We introduce DynAttn, an interpretable dynamic-attention forecasting framework for high-dimensional spatio-temporal count processes. DynAttn combines rolling-window estimation, shared elastic-net feature gating, a compact weight-tied self-attention encoder, and a zero-inflated negative binomial (ZINB) likelihood. This architecture produces calibrated multi-horizon forecasts of expected casualties and exceedance probabilities, while retaining transparent diagnostics through feature gates, ablation analysis, and elasticity measures. We evaluate DynAttn using global country-level and high-resolution PRIO-grid-level conflict data from the VIEWS forecasting system, benchmarking it against established statistical and machine-learning approaches, including DynENet, LSTM, Prophet, PatchTST, and the official VIEWS baseline. Across forecast horizons from one to twelve months, DynAttn consistently achieves substantially higher predictive accuracy, with particularly large gains in sparse grid-level settings where competing models often become unstable or degrade sharply. Beyond predictive performance, DynAttn enables structured interpretation of regional conflict dynamics. In our application, cross-regional analyses show that short-run conflict persistence and spatial diffusion form the core predictive backbone, while climate stress acts either as a conditional amplifier or a primary driver depending on the conflict theater.


翻译:预测冲突相关的致死人数仍然是政治学与政策分析中的一个核心挑战,这源于暴力数据具有稀疏性、突发性和高度非平稳性的特点。本文提出了DynAttn,一个用于高维时空计数过程的可解释动态注意力预测框架。DynAttn结合了滚动窗口估计、共享弹性网络特征门控、紧凑的权重绑定自注意力编码器以及零膨胀负二项式(ZINB)似然函数。该架构能够生成经过校准的多步预期伤亡人数预测和超限概率预测,同时通过特征门控、消融分析和弹性度量保持透明的诊断能力。我们使用来自VIEWS预测系统的全球国家层面和高分辨率PRIO网格层面的冲突数据对DynAttn进行评估,并将其与成熟的统计和机器学习方法(包括DynENet、LSTM、Prophet、PatchTST以及官方的VIEWS基线模型)进行基准比较。在从一个月到十二个月的预测范围内,DynAttn始终取得显著更高的预测准确度,在稀疏的网格层面设置中优势尤为明显,而竞争模型在此类设置中常常变得不稳定或性能急剧下降。除了预测性能,DynAttn还支持对区域冲突动态进行结构化解释。在我们的应用中,跨区域分析表明,短期冲突持续性和空间扩散构成了核心的预测支柱,而气候压力则根据冲突区域的不同,扮演着条件性放大器或主要驱动力的角色。

0
下载
关闭预览

相关内容

Tina:基于 LoRA 的轻量级推理模型
专知会员服务
16+阅读 · 4月24日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员