In many real-life settings, agents must navigate dynamic environments while reasoning under incomplete information and acting on a corpus of unstable, context-dependent, and often conflicting norms. We introduce a general, non-modal, proof-theoretic framework for deontic reasoning grounded in default logic. Its central feature is the notion of controlled sequent - a sequent annotated with sets of formulas (control sets) that prescribe what should or should not be entailed by the formulas in the antecedent. When combined with distinct extra-logical rules representing defaults and norms, these control sets record the conditions and constraints governing their applicability, thereby enabling local soundness checks for derived sequents. We prove that controlled sequent calculi satisfies admissibility of contraction and non-analytic cuts, and we establish their strong completeness with respect to credulous consequence in default theories and normative systems. Finally, we illustrate in depth how controlled sequent calculi provide a flexible and expressive basis for resolving deontic conflicts and capturing dynamic deontic notions via appropriate extra-logical rules.
翻译:在许多现实情境中,智能体必须在动态环境中运作,同时基于不完全信息进行推理,并依据一系列不稳定、依赖于上下文且常常相互冲突的规范来行动。我们提出了一种基于默认逻辑的、通用的、非模态的证明论框架用于道义推理。其核心特征是受控矢列式的概念——这是一种用公式集(控制集)进行标注的矢列式,这些控制集规定了前件中的公式应该或不应该推出什么。当与代表默认规则和规范的不同逻辑外规则结合时,这些控制集记录了管理其适用性的条件和约束,从而能够对推导出的矢列式进行局部可靠性检查。我们证明了受控矢列式演算满足收缩规则和非分析性切割规则的可接纳性,并建立了它们相对于默认理论和规范系统中轻信后果的强完备性。最后,我们深入阐述了受控矢列式演算如何通过适当的逻辑外规则,为化解道义冲突和捕捉动态道义概念提供了一个灵活且富有表现力的基础。