A temporal graph $G$ is a sequence $(G_t)_{t \in I}$ of graphs on the same vertex set of size $n$. The \emph{temporal exploration problem} asks for the length of the shortest sequence of vertices that starts at a given vertex, visits every vertex, and at each time step $t$ either stays at the current vertex or moves to an adjacent vertex in $G_t$. Bounds on the length of a shortest temporal exploration have been investigated extensively. Perhaps the most fundamental case is when each graph $G_t$ is connected and has bounded maximum degree. In this setting, Erlebach, Kammer, Luo, Sajenko, and Spooner [ICALP 2019] showed that there exists an exploration of $G$ in $\mathcal{O}(n^{7/4})$ time steps. We significantly improve this bound by showing that $\mathcal{O}(n^{3/2} \sqrt{\log n})$ time steps suffice. In fact, we deduce this result from a much more general statement. Let the \emph{average temporal maximum degree} $D$ of $G$ be the average of $\max_{t \in I} d_{G_t}(v)$ over all vertices $v \in V(G)$, where $d_{G_t}(v)$ denotes the degree of $v$ in $G_t$. If each graph $G_t$ is connected, we show that there exists an exploration of $G$ in $\mathcal{O}(n^{3/2} \sqrt{D \log n})$ time steps. In particular, this gives the first subquadratic upper bound when the underlying graph has bounded average degree. As a special case, this also improves the previous best bounds when the underlying graph is planar or has bounded treewidth and provides a unified approach for all of these settings. Our bound is subquadratic already when $D=o(n/\log n)$.
翻译:时序图 $G$ 是在相同规模为 $n$ 的顶点集上定义的图序列 $(G_t)_{t \\in I}$。\\emph{时序探索问题}要求寻找从给定顶点出发、访问所有顶点、且在每一时间步 $t$ 要么停留在当前顶点要么移动到 $G_t$ 中相邻顶点的最短顶点序列长度。关于最短时序探索长度的界已被广泛研究。最基础的情形可能是每个图 $G_t$ 均连通且具有有界最大度数。在此设定下,Erlebach、Kammer、Luo、Sajenko 和 Spooner [ICALP 2019] 证明了存在 $\\mathcal{O}(n^{7/4})$ 时间步内完成 $G$ 探索的方案。我们通过证明 $\\mathcal{O}(n^{3/2} \\sqrt{\\log n})$ 时间步即足够,显著改进了该界。实际上,我们从更一般的结论推导出该结果。令 $G$ 的\\emph{平均时序最大度数} $D$ 为所有顶点 $v \\in V(G)$ 上 $\\max_{t \\in I} d_{G_t}(v)$ 的平均值,其中 $d_{G_t}(v)$ 表示 $v$ 在 $G_t$ 中的度数。若每个图 $G_t$ 均连通,我们证明存在 $\\mathcal{O}(n^{3/2} \\sqrt{D \\log n})$ 时间步内完成 $G$ 探索的方案。特别地,当底层图具有有界平均度数时,这给出了首个次二次上界。作为特例,当底层图为平面图或具有有界树宽时,该结果也改进了先前的最佳界,并为所有这些设定提供了统一方法。当 $D=o(n/\\log n)$ 时,我们的界已是次二次的。