Federated learning (FL) is a privacy-promoting framework that enables potentially large number of clients to collaboratively train machine learning models. In a FL system, a server coordinates the collaboration by collecting and aggregating clients' model updates while the clients' data remains local and private. A major challenge in federated learning arises when the local data is heterogeneous -- the setting in which performance of the learned global model may deteriorate significantly compared to the scenario where the data is identically distributed across the clients. In this paper we propose FedDPMS (Federated Differentially Private Means Sharing), an FL algorithm in which clients deploy variational auto-encoders to augment local datasets with data synthesized using differentially private means of latent data representations communicated by a trusted server. Such augmentation ameliorates effects of data heterogeneity across the clients without compromising privacy. Our experiments on deep image classification tasks demonstrate that FedDPMS outperforms competing state-of-the-art FL methods specifically designed for heterogeneous data settings.


翻译:联邦学习(FL)是一个促进隐私的框架,它使潜在的大量客户能够合作培训机器学习模式。在FL系统中,服务器通过收集和汇总客户的模型更新,协调协作,同时客户的数据仍然是本地和私有的。当当地数据多种多样时,就会产生一个重大挑战。当当地数据具有多样性时,联邦学习(FL)就会产生一个重大挑战。在这种背景下,学习的全球模型的性能可能大大恶化,而数据在客户之间分布完全相同。在本文中,我们建议FDDPMS(FFedDPMS(Federal differentive Prical Resolublicity shablication)是一种FL算法,在这种算法中,客户采用变式自动计算器,使用由信任的服务器传送的不同私式潜在数据表达方式合成的数据来增强本地数据集。这种增强能力可以提高客户之间数据差异性,同时又不损害隐私。我们在深层图像分类任务方面的实验表明,FDDPMS比为多种数据设置而专门设计的最先进的FL方法更完美。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员