Conversational recommender systems have demonstrated great success. They can accurately capture a user's current detailed preference -- through a multi-round interaction cycle -- to effectively guide users to a more personalized recommendation. Alas, conversational recommender systems can be plagued by the adverse effects of bias, much like traditional recommenders. In this work, we argue for increased attention on the presence of and methods for counteracting bias in these emerging systems. As a starting point, we propose three fundamental questions that should be deeply examined to enable fairness in conversational recommender systems.


翻译:对话推荐人系统取得了巨大成功。它们可以准确地捕捉用户目前的详细偏好 -- -- 通过多轮互动周期 -- -- 以有效指导用户接受更个性化的建议。唉,对话推荐人系统可能受到偏见的不利影响,这与传统推荐人大相径庭。在这项工作中,我们主张更多地关注这些新兴系统中存在的偏见以及消除偏见的方法。作为起点,我们提出三个基本问题,应当深入审查,以使对话推荐人系统公平。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员