Quantum reinforcement learning (QRL) has emerged as a framework to solve sequential decision-making tasks, showcasing empirical quantum advantages. A notable development is through quantum recurrent neural networks (QRNNs) for memory-intensive tasks such as partially observable environments. However, QRL models incorporating QRNN encounter challenges such as inefficient training of QRL with QRNN, given that the computation of gradients in QRNN is both computationally expensive and time-consuming. This work presents a novel approach to address this challenge by constructing QRL agents utilizing QRNN-based reservoirs, specifically employing quantum long short-term memory (QLSTM). QLSTM parameters are randomly initialized and fixed without training. The model is trained using the asynchronous advantage actor-aritic (A3C) algorithm. Through numerical simulations, we validate the efficacy of our QLSTM-Reservoir RL framework. Its performance is assessed on standard benchmarks, demonstrating comparable results to a fully trained QLSTM RL model with identical architecture and training settings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月27日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员