In this paper, we provide a theoretical analysis of the inductive biases in convolutional neural networks (CNNs). We start by examining the universality of CNNs, i.e., the ability to approximate any continuous functions. We prove that a depth of $\mathcal{O}(\log d)$ suffices for deep CNNs to achieve this universality, where $d$ in the input dimension. Additionally, we establish that learning sparse functions with CNNs requires only $\widetilde{\mathcal{O}}(\log^2d)$ samples, indicating that deep CNNs can efficiently capture {\em long-range} sparse correlations. These results are made possible through a novel combination of the multichanneling and downsampling when increasing the network depth. We also delve into the distinct roles of weight sharing and locality in CNNs. To this end, we compare the performance of CNNs, locally-connected networks (LCNs), and fully-connected networks (FCNs) on a simple regression task, where LCNs can be viewed as CNNs without weight sharing. On the one hand, we prove that LCNs require ${\Omega}(d)$ samples while CNNs need only $\widetilde{\mathcal{O}}(\log^2d)$ samples, highlighting the critical role of weight sharing. On the other hand, we prove that FCNs require $\Omega(d^2)$ samples, whereas LCNs need only $\widetilde{\mathcal{O}}(d)$ samples, underscoring the importance of locality. These provable separations quantify the difference between the two biases, and the major observation behind our proof is that weight sharing and locality break different symmetries in the learning process.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
66+阅读 · 2021年6月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员