In recent years, machine learning (ML) has emerged as a powerful tool for solving a wide range of problems, including medical decision-making. The exponential growth of medical data over the past two decades has surpassed the capacity for manual analysis, prompting increased interest in automated data analysis and processing. ML algorithms, capable of learning from data with minimal human intervention, are particularly well-suited for medical data analysis and interpretation. One significant advantage of ML is the reduced cost of collecting labeled training data necessary for supervised learning. While numerous studies have explored the applications of ML in medicine, this survey specifically focuses on the use of ML across various medical research fields. We provide a comprehensive technical overview of existing studies on ML applications in medicine, highlighting the strengths and limitations of these approaches. Additionally, we discuss potential research directions for future exploration. These include the development of more sophisticated reward functions, as the accuracy of the reward function is crucial for ML performance, the integration of ML with other techniques, and the application of ML to new and emerging areas in genomics research. Finally, we summarize our findings and present the current state of the field and the future outlook for ML in medical application.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员