In this paper, a privacy preserving image classification method is proposed under the use of ConvMixer models. To protect the visual information of test images, a test image is divided into blocks, and then every block is encrypted by using a random orthogonal matrix. Moreover, a ConvMixer model trained with plain images is transformed by the random orthogonal matrix used for encrypting test images, on the basis of the embedding structure of ConvMixer. The proposed method allows us not only to use the same classification accuracy as that of ConvMixer models without considering privacy protection but to also enhance robustness against various attacks compared to conventional privacy-preserving learning.


翻译:在本文中,使用ConvMixer模型提出了保护隐私图像分类方法。为了保护测试图像的视觉信息,测试图像被分为块块,然后通过随机正方形矩阵加密每个块块。此外,用普通图像培训的ConvMixer模型被用于加密测试图像的随机正方形矩阵转换为基于ConvMixer嵌入结构的随机正方形矩阵。拟议方法使我们不仅可以在不考虑隐私保护的情况下使用ConvMixer模型的分类精确度,而且能够加强抵御与常规隐私保护学习相比的各种攻击的力度。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员