Current optical vegetation indices (VIs) for monitoring forest ecosystems are widely used in various applications. However, continuous monitoring based on optical satellite data can be hampered by atmospheric effects such as clouds. On the contrary, synthetic aperture radar (SAR) data can offer insightful and systematic forest monitoring with complete time series due to signal penetration through clouds and day and night acquisitions. The goal of this work is to overcome the issues affecting optical data with SAR data and serve as a substitute for estimating optical VIs for forests using machine learning. Time series of four VIs (LAI, FAPAR, EVI and NDVI) were estimated using multitemporal Sentinel-1 SAR and ancillary data. This was enabled by creating a paired multi-temporal and multi-modal dataset in Google Earth Engine (GEE), including temporally and spatially aligned Sentinel-1, Sentinel-2, digital elevation model (DEM), weather and land cover datasets (MMT-GEE). The use of ancillary features generated from DEM and weather data improved the results. The open-source Automatic Machine Learning (AutoML) approach, auto-sklearn, outperformed Random Forest Regression for three out of four VIs, while a 1-hour optimization length was enough to achieve sufficient results with an R2 of 69-84% low errors (0.05-0.32 of MAE depending on VI). Great agreement was also found for selected case studies in the time series analysis and in the spatial comparison between the original and estimated SAR-based VIs. In general, compared to VIs from currently freely available optical satellite data and available global VI products, a better temporal resolution (up to 240 measurements/year) and a better spatial resolution (20 m) were achieved using estimated SAR-based VIs. A great advantage of the SAR-based VI is the ability to detect abrupt forest changes with a sub-weekly temporal accuracy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员