External memory is a key component of modern large language model (LLM) systems, enabling long-term interaction and personalization. Despite its importance, memory management is still largely driven by hand-designed heuristics, offering little insight into the long-term and uncertain consequences of memory decisions. In practice, choices about what to read or write shape future retrieval and downstream behavior in ways that are difficult to anticipate. We argue that memory management should be viewed as a sequential decision-making problem under uncertainty, where the utility of memory is delayed and dependent on future interactions. To this end, we propose DAM (Decision-theoretic Agent Memory), a decision-theoretic framework that decomposes memory management into immediate information access and hierarchical storage maintenance. Within this architecture, candidate operations are evaluated via value functions and uncertainty estimators, enabling an aggregate policy to arbitrate decisions based on estimated long-term utility and risk. Our contribution is not a new algorithm, but a principled reframing that clarifies the limitations of heuristic approaches and provides a foundation for future research on uncertainty-aware memory systems.
翻译:外部记忆是现代大型语言模型(LLM)系统的关键组成部分,它支持长期交互与个性化。尽管其重要性不言而喻,记忆管理目前仍主要依赖于人工设计的启发式方法,难以揭示记忆决策所引发的长期且不确定的后果。在实践中,关于读取或写入内容的决策会以难以预见的方式影响未来的检索与下游行为。我们认为,记忆管理应被视为一种不确定性下的序贯决策问题,其中记忆的效用具有延迟性,并依赖于未来的交互。为此,我们提出了DAM(决策理论智能体记忆),这是一个决策理论框架,将记忆管理分解为即时信息访问与分层存储维护。在此架构中,候选操作通过价值函数与不确定性估计器进行评估,使得聚合策略能够基于估计的长期效用与风险来仲裁决策。我们的贡献并非提出一种新算法,而是一种原则性的重构,它阐明了启发式方法的局限性,并为未来面向不确定性感知的记忆系统研究奠定了基础。