We generalize previous work by Mardal, Nilssen, and Staff (2007, SIAM J. Sci. Comp. v. 29, pp. 361-375) and Rana, Howle, Long, Meek, and Milestone (2021, SIAM J. Sci. Comp. v. 43, p. 475-495) on order-optimal preconditioners for parabolic PDEs to a larger class of differential equations and methods. The problems considered are those of the forms $u_{t}=-\mathcal{K}u+g$ and $u_{tt}=-\mathcal{{K}}u+g$, where the operator $\mathcal{{K}}$ is defined by $\mathcal{{K}}u:=-\nabla\cdot\left(\alpha\nabla u\right)+\beta u$ and the functions $\alpha$ and $\beta$ are restricted so that $\alpha>0$, and $\beta\ge0$. The methods considered are A-stable implicit Runge--Kutta methods for the parabolic equation and implicit Runge--Kutta--Nystr\"om methods for the hyperbolic equation. We prove the order optimality of a class of block preconditioners for the stage equation system arising from these problems, and furthermore we show that the LD and DU preconditioners of Rana et al. are in this class. We carry out numerical experiments on several test problems in this class -- the 2D diffusion equation, Pennes bioheat equation, the wave equation, and the Klein--Gordon equation, with both constant and variable coefficients. Our experiments show that these preconditioners, particularly the LD preconditioner, are successful at reducing the condition number of the systems as well as improving the convergence rate and solve time for GMRES applied to the stage equations.


翻译:我们把Mardal、Nilssen和Sstaff(2007年,SIAM J.Sci.Comp. v. 29, pp.361-375)和Rana、Howle、Long、Meek和Milestone(2021,SIAM J.Sci.comp. v.43, p 475-495)以往关于抛射式PDE的最优先决条件的规范性工作推广到更大的差别方程式和方法类别。所考虑的问题是表格 $u ⁇ t ⁇ \\\ mathcal{K}u+g$和$$@tätt ⁇ -mathcal_Küu+g$, 操作者$\mathcal_K_K_Qä_kestone (2021,SIMalcal_Qal_Qal_Qal_K_Qral_K_) 定义的操作者, 用于Mial-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-deal-mo-momo-mo-mo-mo-deal-modal-mo-mo-s-mo-mo-mo-modal-modal-mo-s-s-mo-modal-mos-s-modal-mo-modal-modal-s-s-s-s-mo-s-s-s-mo-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-sl-s-s-s-s-s-s-s-l-s-s-s-s-s-s-s-s-s-s-s-s-s-l-s-s-s-s-l-l-l-l-l-l-s-s-l-l-s

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
0+阅读 · 2022年8月4日
Arxiv
0+阅读 · 2022年8月4日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员